We present an estimated DSGE model of stock market bubbles and business cycles using Bayesian methods. Bubbles emerge through a positive feedback loop mechanism supported by self-fulfilling beliefs. We identify a sentiment shock which drives the movements of bubbles and is transmitted to the real economy through endogenous credit constraints. This shock explains most of the stock market fluctuations and a sizable fraction of the variations in real quantities. It generates the comovement between stock prices and the real economy and is the dominant force in driving the internet bubbles and the Great Recession.

Keywords: Stock Market Bubbles, Bayesian Estimation, DSGE, Credit Constraints, Business Cycle, Sentiment Shock

JEL codes: E22, E32, E44
1. Introduction

The U.S. stock market is volatile relative to fundamentals as is evident from Figure 1, which presents the monthly data of the real Standard and Poor’s Composite Stock Price Index from January 1871 to January 2011, and the corresponding series of real earnings. Two recent boom-bust episodes are remarkable. Starting from January 1995, the stock market rose persistently and reached the peak in August 2000. Through this period, the stock market rose by about 1.8 times. This boom is often attributed to the internet bubble. Following the peak in August 2000, the stock market crashed, reaching the bottom in February 2003. The stock market lost about 47 percent. After then the stock market went up and reaching the peak in October 2007. This stock market runup is often attributed to the housing market bubble. Following the burst of the bubble, the U.S. economy entered the Great Recession, with the stock market drop of 52 percent from October 2007 through March 2009.

![Figure 1: Real stock price indexes and real earnings. Source: Robert Shiller’s website: http://www.econ.yale.edu/shiller/data.htm.](image)

The U.S. stock market comoves with macroeconomic quantities. The boom phase is often associated with strong output, consumption, investment, and hours, while the bust phase is often associated with economic downturns. Stock prices, consumption, investment, and hours worked are procyclical, i.e., they exhibit a positive contemporaneous correlation with output (see Table 3 presented later).

The preceding observations raise several questions. What are the key forces driving the boom-bust episodes? Are they driven by economic fundamentals, or are they bubbles? What explains the comovement between the stock market and the macroeconomic quantities? These questions are challenging to macroeconomists. Standard macroeconomic models treat the stock market as a sideshow. In particular, after solving for macroeconomic quantities in a social planner problem, one can derive the stock price to support these quantities in a competitive equilibrium. Much attention has been devoted to the equity premium puzzle (Hansen and Singleton (1983) and Mehra
and Prescott (1988)). However, the preceding questions have remained underexplored.

The goal of this paper is to provide an estimated dynamic stochastic general equilibrium (DSGE) model to address these questions. To the best of our knowledge, this paper provides the first estimated DSGE model of stock market bubbles using Bayesian methods. Our model-based, full-information econometric methodology has several advantages over the early literature using the single-equation or the vector autoregression (VAR) approach to the identification of bubbles.¹ First, because both bubbles and fundamentals are not observable, that literature fails to differentiate between misspecified fundamentals and bubbles (see Gurkaynak (2008) for a recent survey). By contrast, we treat bubbles as a latent variable in a DSGE model. The state space representation of the DSGE model allows us to conduct Bayesian inference of the latent variables by knowledge of the observable data. We can answer the question as to whether bubbles are important by comparing the marginal likelihoods of a DSGE model with bubbles and an alternative DSGE without bubbles. Second, the single-equation or the VAR approach does not produce time series of the bubble component and the shock behind the variation in bubbles. Thus, it is difficult to evaluate whether the properties of bubbles are in line with our daily-life experience. By contrast, we can simulate our model based on the estimated parameters and shocks to generate a time series of bubbles. Third, because our model is structural, we can do counterfactual analysis to examine the role of bubbles in generating fluctuations in macroeconomic quantities.

We set up a real business cycle (RBC) model with three standard elements: habit formation, investment adjustment costs, and variable capacity utilization. The novel element of our model is the assumption that firms are subject to idiosyncratic investment efficiency shocks and face endogenous credit constraints as in Miao and Wang (2011a,b, 2012a,b), and Miao, Wang, and Xu (2012). Under this assumption, a stock market bubble can exist through a positive feedback loop mechanism supported by self-fulfilling beliefs. The intuition is as follows. Suppose that households have optimistic beliefs about the stock market value of the firm. The firm uses its assets as collateral to borrow from the lender. If both the lender and the firm believe that firm assets have high value, then the firm can borrow more and make more investment. This makes firm value indeed high, supporting people’s initial optimistic beliefs. Bubbles can burst if people believe so. By no arbitrage, a rational bubble on the same asset cannot re-emerge after a previous bubble bursts. To introduce recurrent bubbles in the model, we introduce exogenous entry and exit. New entrants bring new bubbles in the economy, making the total bubble in the economy stationary.

We introduce a sentiment shock which drives the fluctuations in the bubble and hence the stock price. This shock reflects households’ beliefs about the relative size of the old bubble to the new bubble. This shock is transmitted to the real economy through the credit constraints. Its movements affect the tightness of the credit constraints and hence a firm’s borrowing capacity. This affects a firm’s investment decisions and hence output.² In addition to this shock, we incorporate five

¹See Philippis and Yu (2011) for a recent econometric test for bubbles.
²Chirinko and Schaller (2001), Goyal and Yamada (2004), and Gilchrist, Himmelberg, and Huberman (2005) find empirical evidence that investment responds to the stock market value beyond the fundamentals. See Gan (2007) and Chaney, Sraer, and Thesmar (2009) for empirical evidence on the relation between collateral constraints and
other shocks often studied in the literature: permanent and transitory labor-augmenting technology (or TFP) shocks, the permanent investment-specific technology (IST) shock, the labor supply shock, and the financial shock. We estimate our model using Bayesian methods to fit six U.S. time series data of consumption, investment, hours, the relative price of investment goods, stock prices, and the Chicago Fed’s National Financial Conditions Index (NFCI). Our full-information, model-based, empirical strategy for identifying the sentiment shock exploits the fact that in the theoretical model the observable variables react differently to different types of shocks. We then use our estimated model to address the questions raised earlier. We also use our model to shed light on two major bubble and crash episodes: (i) the internet bubble during the late 1990s and its subsequent crash, and (ii) the recent stock market bubble caused by the housing bubble and the subsequent Great Recession.

Our baseline estimation results show that the sentiment shock explains most of the fluctuations in the stock price at the business cycle frequency. It also explains a sizable fraction of the variations in investment, consumption, and output. Consistent with the RBC literature, the two TFP shocks together explain most of the variations in these quantities. Historical decomposition of shocks shows that the sentiment shock explains almost all of the stock market booms and busts. In addition, it is the dominant driving force behind the movements in investment during the internet bubble and crash and the recent stock market bubble and the subsequent Great Recession. The sentiment shock accounts for a large share of the consumption fall during the Great Recession. But it is not a dominant driver behind the consumption movements during the internet bubble and crash. For both boom-bust episodes, the labor supply shock, instead of the sentiment shock, is the major driving force behind the movements in labor hours.

To examine the robustness of our findings, we study two model variations. First, we incorporate the consumer sentiment index (SCI) data from the University of Michigan in the estimation since this index is highly correlated with the smoothed sentiment shock. We introduce measurement errors into the measurement equation for this data. We also allow SCI to be correlated with business cycles and allow the sentiment shock to be correlated with other shocks in the model. Second, we follow Ireland (2004) and estimate a hybrid model that combines the DSGE framework with the VAR model. We shut down all shocks in the baseline model except for the sentiment shock. We then formulate the measurement equations as a VAR system. We find that our results in the baseline model are robust to the two model variations, although the impact of the sentiment shock is weakened. As a conservative estimate, the sentiment shock explains about 73, 17, 10, and 20 percent of the fluctuations in the stock market, output, investment, and consumption, respectively.

The transmission mechanism for the comovement between the stock market and the real economy is as follows. In response to a positive sentiment shock, the bubble and the stock price rise. This relaxes firms’ credit constraints and raises their investments. Importantly, the rise in the bubble has a capital reallocation effect, making resources move to more productive firms. This
makes investment more efficient. Tobin’s marginal $Q$ falls as the capital stock rises, causing the capacity utilization rate to rise. This induces the labor demand to rise. The wealth effect due to the rise in stock prices causes consumption to rise and the labor supply to fall. It turns out that the rise in the labor demand dominates the fall in the labor supply, and hence labor hours rise. The increased hours and capacity utilization raises output.

The sentiment shock in our model is similar to the financial shock in that the impact of both shocks is transmitted to the real economy through the credit constraints. Without using the stock price data in the estimation, the financial shock is important, while the sentiment shock is unimportant. However, when the stock price data is included in the estimation, the sentiment shock displaces the financial shock, making the impact of the financial shock much smaller.

We emphasize that the sentiment shock is not simply a residual used to explain the stock market volatility. When we shut down this shock and introduce measurement errors in the measurement equation for the stock price data, we find that the measurement errors explain most of the variation in the stock prices. But this model cannot explain the comovement between the stock market and the real economy.

It is challenging for standard DSGE models to explain this comovement and the stock market booms and busts. One often needs a large investment adjustment cost parameter to make Tobin’s marginal $Q$ highly volatile. In addition, one also has to introduce other sources of shocks to drive the movements of the marginal $Q$ because many shocks often studied in the literature cannot generate either the right comovements or the right relative volatility. For example, the TFP shock cannot generate large volatility of the stock price, while the IST shock generates counterfactual comovements of the marginal $Q$ (hence stock prices) and the relative price of investment goods if both series are used as observable data. The financial shock typically makes investment and consumption move in an opposite direction and makes the marginal $Q$ move countercyclically.

Recently, two types of shocks have drawn wide attention: the news shock and the risk (or uncertainty) shock. The idea of the news shock dates back to Pigou (1926). It turns out that the news shock cannot generate the comovement in a standard RBC model (Barro and King (1984) and Wang (2012)). To generate the comovement, Beaudry and Portier (2004) incorporate multisectoral adjustment costs, Christiano et al. (2008) introduce nominal rigidities and inflation-targeting monetary policy, and Jaimovich and Rebelo (2009) consider preferences that exhibit a weak short-run wealth effect on the labor supply. These three papers study calibrated DSGE models and do not examine the empirical importance of the news shock.\(^3\) Fujiwara, Hirose, and Shintani (2011) and Schmitt-Grohe and Uribe (2012) study this issue using the Bayesian DSGE approach. Most Bayesian DSGE models do not incorporate stock prices as observable data for estimation. As Schmitt-Grohe and Uribe (2012) point out, “as is well known, the neoclassical model does not provide a fully adequate explanation of asset price movements.”\(^4\)

\(^3\) Beaudry and Portier (2006) study the empirical implications of the news shock using the VAR approach.

\(^4\) In Section 6.8 of their paper, Schmitt-Grohe and Uribe (2012) discuss briefly how the share of unconditional variance explained by anticipated shocks will change when stock prices are included as observable data. But they do
By incorporating the stock price data, Christiano, Motto, Rostagno (2010, 2012) argue that the risk shock, related to that in Bloom (2009), displaces the marginal efficiency of investment shock and is the most important shock driving business cycles. They also introduce a news shock to the risk shock, instead of TFP. Their models are based on Bernanke, Gertler and Gilchrist (1999) and identify the credit constrained entrepreneurs’ net worth as the stock market value in the data. By contrast, we use the aggregate market value of the firms in the model as the stock price index in the data, which is more consistent with the conventional measurement. The estimated investment adjustment cost parameter is equal to 29.22 and 10.78 in Christiano, Motto, and Rostagno (2010, 2012), respectively, both of which are much larger than our estimate, 0.03.

As in Carlstrom and Fuerst (1997), Kiyotaki and Moore (1997), Bernanke, Gertler, and Gilchrist (1999), and Jermann and Quadrini (2012), financial frictions play an important role in our model. Unlike in these papers and in Christiano, Motto, Rostagno (2010, 2012), firms in our model are not financially constrained in the aggregate. Our model features firm heterogeneity. Some firms are financially constrained, but some are not. In the aggregate, firms can be self-financing. Our modeling is consistent with the evidence documented by Chari, Christiano, and Kehoe (2008) and Ohanian (2010). Unlike the representative firm setup, there is a capital reallocation channel for the financial frictions to impact the real economy.

Our paper is closely related to the literature on rational bubbles (Tirole (1982), Weil (1987), and Santos and Woodford (1997)). Due to the recent Great Recession, this literature has generated renewed interest. Recent important contributions include Kocherlakota (2009), Farhi and Tirole (2010), Hirano and Yanagawa (2010), Martin and Ventura (2011a,b), Wang and Wen (2011), Miao and Wang (2011a,b, 2012a,b), and Miao, Wang and Xu (2012). Most papers in this literature are theoretical, while Wang and Wen (2011) provide some calibration exercises. Except for Miao and Wang (2011a,b, 2012a,b) and Miao, Wang, and Xu (2012), all other papers study bubbles on intrinsically useless assets or assets with exogenously given payoffs.

Our paper is also related to the papers by Farmer (2012a,b), who argues that multiple equilibria supported by self-fulfilling beliefs can help understand the recent Great Recession. He provides a search model and replaces the Nash bargaining equation for the wage determination with an equation to determine the expected stock future price. In particular, he assumes that the expected future stock price relative to the price level or the real wage is determined by an exogenously given variable representing beliefs. The evolution of this variable is determined by a belief function. Unlike Farmer’s approach, we model beliefs as a sentiment shock to the relative size of the old bubble to the new bubble. We then derive a no-arbitrage equation for the bubble in equilibrium. No extra equation is imposed exogenously.

The remainder of the paper proceeds as follows. Section 2 presents the baseline model. Section 3 estimates model parameters using Bayesian methods. Section 4 analyzes the estimated model’s
economic implications. Section 5 conducts a sensitivity analysis by estimating four alternative models. Section 6 concludes. Technical details are relegated to appendices.

2. The Baseline Model

We consider an infinite-horizon economy that consists of households, firms, capital goods producers, and financial intermediaries. Households supply labor to firms, deposit funds in competitive financial intermediaries, and trade firm shares in a stock market. Firms produce final goods that are used for consumption and investment. Capital goods producers produce investment goods subject to adjustment costs. Firms purchase investment goods from capital goods producers subject to credit constraints. Firms finance investment using internal funds, new equity issuance, and external borrowing. Firms and households can save in competitive financial intermediaries (or banks), which make one-period loans to borrowers. As a starting point, we assume that there is no friction in financial intermediaries so that we treat them as a veil. In addition, we do not consider money and monetary policy and study a real model of business cycles.

2.1. Households

There is a continuum of identical households of measure unity. Each household derives utility from consumption and leisure according to the following expected utility function:

\[
E \sum_{t=0}^{\infty} \beta^t [\ln(C_t - hC_{t-1}) - \psi_t N_t] ,
\]

where \( \beta \in (0, 1) \) is the subjective discount factor, \( h \in (0, 1) \) is the habit persistence parameter, \( C_t \) denotes consumption, \( N_t \) denotes labor, and \( \psi_t \) represents a labor supply shock. Assume that \( \ln \psi_t \) follows an AR(1) process.

The representative household’s budget constraint is given by

\[
C_t + P_t^s s_{t+1} + \frac{d_{t+1}}{R_{dt}} = W_t N_t + \Pi_t + (D_t + P_t^s) s_t + d_t, \quad s_0 = 1, \quad d_0 = 0,
\]

where \( s_t, P_t^s, d_t, R_{dt}, W_t, \Pi_t, \) and \( D_t \) denote share holdings, the aggregate stock price of all final goods firms, deposits in the financial intermediaries, the deposit rate, the wage rate, the profit from capital goods producers, and the aggregate dividend, respectively. The household is subject to a borrowing constraint, \( d_{t+1} \geq 0 \). Without a borrowing constraint, a bubble cannot exist (e.g., Kocherlakota (1992, 2009)). In equilibrium, \( s_t = 1 \). The household’s first-order conditions are given by

\[
\Lambda_t W_t = \psi_t ,
\]

\[
\Lambda_t = \frac{1}{C_t - hC_{t-1}} - \beta E_t \frac{h}{C_{t+1} - hC_t} ,
\]
\[
\frac{1}{R_{dt}} \geq \beta(1 - \delta_e)E_t \frac{\Lambda_{t+1}}{\Lambda_t}, \quad \text{with equality when } d_{t+1} > 0,
\]  
where \( \Lambda_t \) represents the marginal utility of consumption.

2.2. Firms

There is a continuum of final goods firms of measure unity. Suppose that households believe that each firm’s stock may contain a bubble. They also believe that the bubble may burst with some probability. By rational expectations, a bubble cannot reemerge in the same firm if a bubble in it bursts previously. Otherwise there would be an arbitrage opportunity. This means that all firms would not contain any bubble when all bubbles burst eventually if there were no new firms entering the economy. As a result, we follow Carlstrom and Fuerst (1997), Bernanke, Gertler and Gilchrist (1999), and Gertler and Kiyotaki (2011), and assume exogenous entry and exit, for simplicity. A firm may die with an exogenously given probability \( \delta_e \) each period. After death, its value is zero and a new firm enters the economy without costs so that the total measure of firms is fixed at unity each period. A new firm entering at date \( t \) starts with an initial capital stock \( K^j_0 \) and then operates in the same way as an incumbent firm. The new firm may bring a new bubble into the economy.\(^6\)

An incumbent firm \( j \in [0, 1] \) combines capital \( K^j_t \) and labor \( N^j_t \) to produce final goods \( Y^j_t \) using the following production function: \(^7\)

\[
Y^j_t = (u^j_t K^j_t)^{\alpha} \left( A_t N^j_t \right)^{1-\alpha},
\]

where \( \alpha \in (0, 1) \), \( u^j_t \) denotes the capacity utilization rate, and \( A_t \) denotes the labor-augmenting technology shock. Given the Cobb-Douglas production function, we may also refer to \( A_t \) as a total factor productivity (TFP) shock. For a new firm entering at date \( t \), we set \( K^j_t = K^0_t \).

Assume that \( A_t \) is composed of a permanent component \( A^p_t \) and a transitory (mean-reverting) component \( A^m_t \) such that \( A_t = A^p_t A^m_t \), where \( \ln \lambda_t \equiv \ln \left( \frac{A^p_t}{A^p_{t-1}} \right) \) and \( \ln A^m_t \) follow independent AR(1) processes.

Assume that the capital depreciation rate between period \( t \) to period \( t+1 \) is given by \( \delta^j_t = \delta(u^j_t) \), where \( \delta \) is a twice continuously differentiable convex function that maps a positive number into \([0, 1]\). We do not need to parameterize the function \( \delta \) since we use the log-linearization solution method. We only need it to be such that the steady-state capacity utilization rate is equal to 1. The capital stock evolves according to

\[
K^j_{t+1} = (1 - \delta^j_t) K^j_t + \epsilon^j_t I^j_t,
\]

\(^6\)See Martin and Ventura (2011b) for a related overlapping generations model with recurrent bubbles.

\(^7\)A firm can be identified by its age. Hence, we may use the notation \( K_{t, \tau} \) to denote firm \( j \)'s capital stock \( K^j_t \) if its age is \( \tau \). Because we want to emphasize the special role of bubbles, we only use such a notation for the bubble.
where \( I^j_t \) denotes investment and \( \varepsilon^j_t \) measures the efficiency of the investment. Assume that investment is irreversible at the firm level so that \( I^j_t \geq 0 \). Assume that \( \varepsilon^j_t \) is IID across firms and over time and is drawn from the fixed cumulative distribution \( \Phi \) over \( [\varepsilon_{\text{min}}, \varepsilon_{\text{max}}] \subset (0, \infty) \) with mean 1 and the probability density function \( \phi \). This shock induces firm heterogeneity in the model.

For tractability, assume that the capacity utilization decision is made before the observation of investment efficiency shock \( \varepsilon^j_t \). Consequently, the optimal capacity utilization does not depend on the idiosyncratic shock \( \varepsilon^j_t \).

Given the wage rate \( w_t \) and the capacity utilization rate \( u^j_t \), the firm chooses labor demand \( N^j_t \) to solve the following problem:

\[
R^j_t u_t^j K^j_t = \max_{N^j_t} (u^j_t K^j_t)^\alpha (A_t N^j_t)^{1-\alpha} - W_t N^j_t, \tag{8}
\]

where

\[
R_t \equiv \alpha \left[ \frac{(1 - \alpha) A_t}{W_t} \right]^{\frac{1-\alpha}{\alpha}}. \tag{9}
\]

In each period \( t \), firm \( j \) can make investment \( I^j_t \) by purchasing investment goods from capital producers at the price \( P_t \). Its flow-of-funds constraint is given by

\[
D^j_t + L^j_t + P_t I^j_t = u^j_t R_t K^j_t + \frac{L^j_{t+1}}{R_{ft}}, \tag{10}
\]

where \( L^j_{t+1} > 0(\leq 0) \) represents borrowing (savings), \( R_{ft} \) represents the interest rate, and \( D^j_t > 0(\leq 0) \) represents dividends (new equity issuance). Assume that external financial markets are imperfect so that firms are subject to the following constraint on new equity issuance:

\[
D^j_t \geq -\eta_t K^j_t, \tag{11}
\]

where \( \eta_t \) is an exogenous stochastic shock to equity issuance. In addition, external borrowing is subject to a credit constraint:

\[
E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} \tilde{V}_{t+1, \tau+1}(K^j_{t+1}, L^j_{t+1}) \geq E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} \tilde{V}_{t+1, \tau+1}(K^j_{t+1}, 0) - E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} \tilde{V}_{t+1, \tau+1}(\xi_t K^j_t, 0), \tag{12}
\]

where \( \tilde{V}_{t, \tau}(k, l, \varepsilon) \) represents the cum-dividends stock market value of the firm with assets \( k \), debt \( l \), and idiosyncratic investment efficiency shock \( \varepsilon \) at time \( t \) with age \( \tau \), and \( \tilde{V}_{t, \tau}(k_t, l_t) \equiv \int \tilde{V}_{t, \tau}(k_t, l_t, \varepsilon) d\Phi(\varepsilon) \) represents the ex ante value after integrating out \( \varepsilon \). Here, \( \xi_t \) represents a collateral shock that reflects the friction in the credit market as in Jermann and Quadrini (2011) and Liu, Wang, Zha (LWZ for short) (2012). Note that \( \tau \) represents the age of firm \( j \). We will show below that equity value depends on the age because it contains a bubble component which is age dependent.

Following Miao and Wang (2011a), we can interpret (12) as an incentive constraint in a contract-
ing problem between the firm and the lender when the firm has limited commitment. In any period \( t \), firm \( j \) chooses to borrow \( L_{t+1}^j/R_{ft} \). It may default on debt \( L_{t+1}^j \) in the beginning of period \( t + 1 \) before the realization of the idiosyncratic investment efficiency shock and conditional on surviving in period \( t + 1 \). If it does not default, it obtains continuation value \( \beta(1 - \delta_e)E_t \frac{A_{t+1}}{A_t} \bar{V}_{t+1, \tau + 1}(K_{t+1}^j, L_{t+1}^j) \). If it defaults, debt is renegotiated and the repayment is relieved. The lender can seize the collateralized asset \( \xi_t K_t^j \) and keep the firm running with these assets by reorganizing the firm. Thus the threat value to the lender is \( \beta(1 - \delta_e)E_t \frac{A_{t+1}}{A_t} \bar{V}_{t+1, \tau + 1}(\xi_t K_t^j, 0) \). Following Jermann and Quadrini (2012), assume that the firm has a full bargaining power. Then, the expression on the right-hand side of (12) is the value of the firm if it chooses to default. Thus, constraint (12) ensures firm \( j \) has no incentive to default in equilibrium.

2.3. Decision Problem

We describe firm \( j \)'s decision problem by dynamic programming:

\[
V_t(\bar{K}_t^j, L_t^j, \bar{\epsilon}_t^j) = \max_{I_t^j, u_t^j, L_{t+1}^j} \left[ R_t u_t^j K_t^j - P_t I_t^j - L_t^j + \frac{L_{t+1}^j}{R_{ft}} \right. \\
+ (1 - \delta_e)E_t \frac{A_{t+1}}{A_t} \bar{V}_{t+1, \tau + 1}(K_{t+1}^j, L_{t+1}^j, \bar{\epsilon}_{t+1}^j),
\]

subject to (7), (12), and

\[
0 \leq P_t I_t^j \leq u_t^j R_t K_t^j + \eta_t K_t^j - L_t^j + \frac{L_{t+1}^j}{R_{ft}},
\]

where we have used equations (10) and (11). We conjecture that the value function takes the following form:

\[
V_t(\bar{K}_t^j, L_t^j, \bar{\epsilon}_t^j) = v_t(\bar{\epsilon}_t^j)K_t^j + b_{t, \tau}(\bar{\epsilon}_t^j) - v_{Lt}(\bar{\epsilon}_t^j)L_t^j,
\]

where \( v_t(\bar{\epsilon}_t^j) \), \( b_{t, \tau}(\bar{\epsilon}_t^j) \geq 0 \), and \( v_{Lt}(\bar{\epsilon}_t^j) \) depend only on idiosyncratic shock \( \bar{\epsilon}_t^j \) and aggregate state variables. The form in (14) is intuitive following Hayashi (1982). Since we assume competitive markets with constant-returns-to-scale technology, it is natural that firm value takes a linear functional form. However, in the presence of credit constraints (12), firm value may contain a bubble component as shown in Miao and Wang (2011a). Either \( b_{t, \tau}(\bar{\epsilon}_t^j) = 0 \) or \( b_{t, \tau}(\bar{\epsilon}_t^j) > 0 \) can be an equilibrium solution because the preceding dynamic programming problem does not give a contraction mapping. If \( b_{t, \tau}(\bar{\epsilon}_t^j) > 0 \), it represents a bubble.

Define the date-\( t \) ex-dividend stock price of the firm of age \( \tau \) as

\[
P_{t, \tau} = (1 - \delta_e)E_t \frac{A_{t+1}}{A_t} \bar{V}_{t+1, \tau + 1}(K_{t+1}^j, L_{t+1}^j).
\]

\(^8\)Miao and Wang (2011a) show that other types of credit constraints such as self-enforcing debt constraints can also generate bubbles.
Given the above conjectured form in (14), we have

\[ P_{t,j}^{s,j} = Q_t K_t^j + B_{t,\tau} - \frac{1}{R_{ft}} L_t^j, \]  

where we define

\[ Q_t = (1 - \delta_e)E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} v_{t+1}(\epsilon_{t+1}), \quad Q_{Lt} = (1 - \delta_e)E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} v_{Lt+1}(\epsilon_{t+1}), \]  

\[ B_{t,\tau} = (1 - \delta_e)E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} b_{t+1,\tau+1}(\epsilon_{t+1}). \]

Note that \( Q_t \) and \( B_{t,\tau} \) do not depend on idiosyncratic shocks because they are integrated out. We interpret \( Q_t \) and \( B_{t,\tau} \) as the (shadow) price of installed capital (Tobin’s marginal Q) and the average bubble of the firm, respectively. Note that marginal \( Q \) and the investment goods price \( P_t \) are different in our model due to financial frictions and idiosyncratic investment efficiency shocks. In addition, marginal \( Q \) is not equal to average \( Q \) in our model because of the existence of a bubble.

Given the conjectured value function (15), the credit constraint (12) becomes

\[ \frac{1}{R_{ft}} L_t^j \leq Q_t \xi_t K_t^j + B_{t,\tau}. \]  

We then have the following proposition:

**Proposition 1**

(i) The optimal investment level \( I_t^j \) of firm \( j \) with a bubble satisfies

\[ P_t I_t^j = \begin{cases} u_t R_t K_t^j + \eta_t K_t^j + Q_t \xi_t K_t^j + B_{t,\tau} - L_t^j & \text{if } \epsilon_t^j \geq \frac{P_t}{Q_t} \\ 0 & \text{otherwise} \end{cases}, \]

(ii) Each firm chooses the same capacity utilization rate \( u_t \) satisfying

\[ R_t(1 + G_t) = Q_t \delta'(u_t), \]

where

\[ G_t = \int_{\epsilon \geq P_t/Q_t} (Q_t/P_t \epsilon - 1)d\Phi(\epsilon). \]

(iii) The bubble, the price of installed capital, and the lending rate satisfy

\[ B_{t,\tau} = \beta(1 - \delta_e)E_t \frac{\Lambda_{t+1}}{\Lambda_t} B_{t+1,\tau+1}(1 + G_{t+1}), \]

\[ Q_t = \beta(1 - \delta_e)E_t \frac{\Lambda_{t+1}}{\Lambda_t} [u_{t+1} R_{t+1} + Q_{t+1}(1 - \delta_{t+1}) + (u_{t+1} R_{t+1} + \xi_{t+1} Q_{t+1} + \eta_{t+1}) G_{t+1}], \]

\[ \frac{1}{R_{ft}} = \beta(1 - \delta_e)E_t \frac{\Lambda_{t+1}}{\Lambda_t} (1 + G_{t+1}), \]

where \( \delta_t = \delta(u_t) \).
The intuition behind the investment rule given in equation (18) is the following. The cost of one unit investment is the purchasing price $P_t$. The associated benefit is the marginal $Q$ multiplied by the investment efficiency $\varepsilon^j_t$. If and only if the benefit exceeds the cost $Q_t \varepsilon^j_t \geq P_t$, the firm makes investment. Otherwise, the firm makes zero investment. This investment rule implies that firm-level investment is lumpy, which is similar to the case with fixed adjustment costs. Equation (18) shows that the investment rate increases with cash flows $R_t$, marginal $Q$, $Q_t$, and the bubble, $B_{t, \tau}$.

Equation (17) shows that the existence of a bubble $B_{t, \tau}$ relaxes the credit constraint, and hence allows the firm to make more investment. Thus, the bubble term $B_{t, \tau}$ enters the investment rule in (18). In addition, the existence of a bubble in the aggregate economy affects the equilibrium $Q_t$ and $P_t$ and hence the investment threshold $\varepsilon^*_t P_t/Q_t$. This also implies that the bubble has an extensive margin effect by affecting the number of investment firms. We call this effect of the bubble the capital reallocation effect.

The bubble must satisfy the no-arbitrage condition given in (21). Purchasing a bubble at time $t$ costs $B_{t, \tau}$ dollars. The benefit consists of two components: (i) The bubble can be sold at the value $B_{t+1, \tau+1}$ at $t + 1$. (ii) The bubble can help the firm generate dividends $B_{t+1, \tau+1} G_{t+1}$. The intuition is that a dollar of the bubble allows the borrowing capacity to increase by one dollar as revealed by (17). This allows the firm to make more investment, generating additional dividends $(\varepsilon Q_t/P_t - 1)$ for the efficiency shock $\varepsilon \geq P_t/Q_t$. The expected investment benefit is given by (20). Thus, $B_{t+1, \tau+1} (1 + G_{t+1})$ represents the sum of “dividends” and the reselling value of the bubble. Using the stochastic discount factor $\beta \Lambda_{t+1}/\Lambda_t$ and considering the possibility of firm death, equation (21) says that the cost of purchasing the bubble is equal to the expected benefit.

Note that the bubble $B_{t, \tau}$ is non-predetermined. Clearly, $B_{t, \tau} = B_{t+1, \tau+1} = 0$ is a solution to (21). If no one believes in a bubble, then a bubble cannot exist. We shall show below an equilibrium with bubble $B_{t, \tau} > 0$ exists. Both types of equilibria are self-fulfilling. Note that the transversality condition cannot rule out a bubble because of the additional benefit $G_{t+1}$ generated by the bubble.

The right-hand side of equation (19) gives the tradeoff between the cost and the benefit of a unit increase in the capacity utilization rate for a unit of capital. A high utilization rate makes capital depreciate faster. But it can generate additional profits and also additional investment benefits.

Equation (22) is an asset pricing equation of marginal $Q$. The dividends from capital consist of the rental rate $u_{t+1} R_{t+1}$ in efficiency units and the investment benefit $(u_{t+1} R_{t+1} + \xi_{t+1} Q_{t+1}) G_{t+1}$ of an additional unit increase in capital. The reselling value of undepreciated capital is $Q_{t+1} (1 - \delta_{t+1})$.

Equation (23) is an asset pricing equation for the interest rate. For firms that decide not to invest and save (buying the bonds issued by other firms). For every one dollar saved today, the firm will earn $R_{ft}$ in the next period. The firm may receive a favorable investment shock in the next period and invest $R_{ft}$ to generate additional dividends $(\varepsilon Q_{t+1}/P_{t+1} - 1)$ in the next period. Hence the total return on saving will be $R_{ft} (1 + G_{t+1})$. 

11
2.4. Sentiment Shock

To model households’ beliefs about the movements of the bubble, we introduce a sentiment shock. Suppose that households believe that the new firm in period $t$ may contain a bubble of size $B_{t,0} = b_t^* > 0$ with probability $\omega$. Then the total new bubble is given by $\omega \delta b_t^*$.

Suppose that households believe that the relative size of the bubbles at date $t + \tau$ for any two firms born at date $t$ and $t + 1$ is given by $\theta_t$, i.e.,

$$\frac{B_{t+\tau,\tau}}{B_{t+\tau,\tau-1}} = \theta_t, \quad t \geq 0, \quad \tau \geq 1,$$

(24)

where $\theta_t$ follows an exogenously given process:

$$\ln \theta_t = (1 - \rho_\theta) \bar{\theta} + \rho_\theta \ln \theta_{t-1} + \varepsilon_{\theta,t},$$

(25)

where $\bar{\theta}$ is the mean, $\rho_\theta \in (-1, 1)$ is the persistence parameter, and $\varepsilon_{\theta,t}$ is an IID normal random variable with mean zero and variance $\sigma_\theta^2$. We interpret this process as a sentiment shock, which reflects household beliefs about the fluctuations in bubbles.\(^9\) These beliefs may change randomly over time. It follows from (24) that

$$B_{t,0} = b_t^*, \quad B_{t,1} = \theta_{t-1} b_t^*, \quad B_{t,2} = \theta_{t-1} \theta_{t-2} b_t^*, \ldots, \quad t \geq 0.$$  

(26)

This equation implies that the sizes of new bubbles and old bubbles are linked by the sentiment shock. The sentiment shock changes the relative sizes. Note that the growth rate $B_{t+1,\tau+1}/B_{t,\tau}$ of the bubble in the same firm born at any given date $t - \tau$ must satisfy an equilibrium restriction derived in equation (21).

2.5. Capital Producers

Capital goods producers make new investment goods using input of final output subject to adjustment costs, as in Gertler and Kiyotaki (2011). They sell new investment goods to firms with investing opportunities at the price $P_t$. The objective function of a capital producer is to choose $I_t$ to solve:

$$\max \{I_t\} \quad E \sum_{t=0}^{\infty} \beta^t \frac{\Lambda_t}{\Lambda_0} \left\{ P_t I_t - \left[ 1 + \frac{\Omega}{2} \left( \frac{I_t}{I_{t-1}} - \bar{\lambda}_I \right)^2 \right] \frac{I_t}{Z_t} \right\},$$

where $\bar{\lambda}_I$ is the steady-state growth rate of aggregate investment, $\Omega > 0$ is the adjustment cost parameter, and $Z_t$ represents an IST shock as in Greenwood, Hercowitz and Krusell (1997). The growth rate $\bar{\lambda}_I$ will be determined in Section 3. Following Justiniano, Primiceri, and Tambalotti

---

\(^9\)In a different formulation available upon request, we may interpret $\theta_t$ as the probability that the bubble survives in the next period. This formulation is isomorphic to the present model. In particular, $m_t$ in equation (32) can be interpreted as the mass of firms having bubbles. Equation (34) is the asset pricing equation for the bubble $B^*_t/m_t$. The advantage of the present setup is that we allow $\theta_t$ to be greater than 1.
(2011), we assume that \( Z_t = Z_{t-1} \lambda_{zt} \), where \( \ln \lambda_{zt} \) follows an AR(1) process. The optimal level of investment goods satisfies the first-order condition:

\[
Z_t P_t = 1 + \frac{\Omega}{2} \left( \frac{I_t}{I_{t-1}} - \bar{\lambda}_I \right)^2 + \Omega \left( \frac{I_t}{I_{t-1}} - \bar{\lambda}_I \right) \frac{I_t}{I_{t-1}} - \beta E_t \frac{\Lambda^t}{\Lambda_t} \Omega \left( \frac{I_{t+1}}{I_t} - \bar{\lambda}_I \right) \frac{Z_t}{Z_{t+1}} \left( \frac{I_{t+1}}{I_t} \right)^2.
\]

\[ (27) \]

### 2.6. Aggregation and Equilibrium

Let \( K_t = \int K^*_t dj \) denote the aggregate capital stock of all firms in the end of period \( t - 1 \) before the realization of the death shock. Let \( X_t \) denote the aggregate capital stock after the realization of the death shock, but before new investment and depreciation take place. Then

\[
X_t = (1 - \delta_e) K_t + \delta_e K_0, \tag{28}
\]

where we have taken into account the capital stock brought by new entrants.

Define aggregate output and aggregate labor as \( Y_t = \int_0^1 Y_t^j dj \) and \( N_t = \int_0^1 N_t^j dj \). By Proposition 1, all firms choose the same capacity utilization rate. Thus, all firms have the same capital-labor ratio. By the linear homogeneity property of the production function, we can then show that

\[
Y_t = (u_t X_t)^{\alpha} (A_t N_t)^{1-\alpha}. \tag{29}
\]

As a result, the wage rate is given by

\[
W_t = \frac{(1 - \alpha) Y_t}{N_t}, \tag{30}
\]

Let \( B^*_t \) denote the total bubble in period \( t \). Adding up the bubble of the firms of all ages and using (26) yield:

\[
B^*_t = \sum_{\tau=0}^{t} (1 - \delta_e)^\tau \delta_e \omega B_{t,\tau} = m_t b^*_t, \tag{31}
\]

where \( m_t \) satisfies the recursion,

\[
m_t = m_{t-1} (1 - \delta_e) \theta_{t-1} + \delta_e \omega, \quad m_0 = \delta_e \omega. \tag{32}
\]

It is stationary in the neighborhood of the steady state as long as \( (1 - \delta_e) \bar{\theta} < 1 \).

By equations (26) and (21),

\[
b^*_t = \beta (1 - \delta_e) \theta_t E_t \frac{\Lambda_{t+1}}{\Lambda_t} b^*_{t+1} (1 + G_{t+1}). \tag{33}
\]

This equation gives an equilibrium restriction on the size of the new bubble. Substituting (31) into
the above equation yields:

\[ B_t^a = \beta (1 - \delta_e) \theta_t E_t \frac{\Lambda_{t+1}}{\Lambda_t} \frac{m_t}{m_{t+1}} B_{t+1}^a (1 + G_{t+1}) . \]  

(34)

This equation gives an equilibrium restriction on the value of the total bubble in the economy. The above two equations prevent any arbitrage opportunities for old and new bubbles. Equations (32) and (34) reveal that a sentiment shock affects the relative size \( m_t \) and hence the aggregate bubble \( B_t^a \).

Aggregating all firm value in (15), we obtain the aggregate stock market value of the firm:

\[ P_t^s = Q_t K_{t+1} + B_t^a . \]

This equation reveals that the aggregate stock price consists of two components: the fundamental \( Q_t K_{t+1} \) and the bubble \( B_t^a \).

Competitive financial intermediaries implies that the deposit rate is equal to the lending rate so that \( R_{dt} = R_{ft} (1 - \delta_e) \), where we have taken into account that firms die with probability \( \delta_e \). It follows from (23) and \( G_{t+1} > 0 \) that

\[ \frac{1}{R_{dt}} = \frac{1}{(1 - \delta_e) R_{ft}} = \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} (1 + G_{t+1}) > \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} . \]  

(35)

Thus, households prefer to borrow until their borrowing constraints bind, i.e., \( d_{t+1} = 0 \). Without borrowing constraints, no arbitrage implies that \( G_{t+1} = 0 \). Equation (21) and the transversality condition will rule out bubbles.

By the market-clearing conditions for bank loans, \( L_t = \int L_j^t dj = d_t = 0 \) for all \( t \geq 0 \), for all periods. This means that firms with high investment efficiency shocks borrow and invest, while the other firms save and lend.

Let \( I_t = \int I_j^t dj \) denote aggregate investment. Using Proposition 1 and adding up firms of all ages, we can use a law of large numbers to drive aggregate investment for the firms with bubbles as

\[ P_t I_t = [(u_t R_t + \xi_t Q_t + \eta_t) X_t + B_t^a - L_t] \int_{\varepsilon > P_t^{\alpha}} d\Phi (\varepsilon) \]

\[ = [(u_t R_t + \xi_t Q_t + \eta_t) X_t + B_t^a] \int_{\varepsilon > P_t^{\alpha}} d\Phi (\varepsilon) , \]

(36)

where in the second line we have used the fact \( L_t = 0 \). Similarly, the capital stock for these firms
evolves according to

\[ K_{t+1} = (1 - \delta_t)X_t + \int I_t^j \varepsilon_t^j \, dj = (1 - \delta_t)X_t + I_t \int_{\varepsilon > \frac{\varepsilon}{\varepsilon_t}} \varepsilon d\Phi(\varepsilon), \]

where we have used a law of large numbers and the fact that \( I_t^j \) and \( \varepsilon_t^j \) are independent by Proposition 1.

The total capacity of external financing is given by

\[ \frac{\eta_t K_t}{\text{new equity}} + \frac{\xi_t Q_t K_t + B_t}{\text{debt}}, \]

where we have used equations (11) and (17) to conduct aggregation. Then the fluctuation in this capacity reflects the overall financial market conditions. We can use a single shock defined as

\[ \zeta_t = \frac{\eta_t}{Q_t} + \xi_t, \]

(39)

to capture the disturbance to the degree of the overall financial constraints and rewrite the total capacity of external financing as \( \zeta_t Q_t K_t + B_t \). Assume that \( \ln \zeta_t \) follows an AR(1) process. Using (39), equations (22) and (36) become

\[ Q_t = \beta(1 - \delta_e)E_t^t \frac{\Lambda_{t+1}}{\Lambda_t} \left[ u_{t+1} R_{t+1} + Q_{t+1}(1 - \delta_{t+1}) + (u_{t+1} R_{t+1} + \zeta_{t+1} Q_{t+1}) G_{t+1} \right]; \]

(40)

\[ P_t I_t = \left[ (u_t R_t + \zeta_t Q_t) X_t + B_t^2 \right] \int_{\varepsilon > \frac{\varepsilon}{\varepsilon_t}} d\Phi(\varepsilon). \]

(41)

In Section 4, we shall estimate the shock \( \zeta_t \) instead of its two components \( \eta_t \) and \( \xi_t \).

The resource constraint is given by

\[ C_t + \left[ 1 + \frac{\Omega}{2} \left( \frac{I_t}{I_{t-1}} - \bar{\lambda}_t \right)^2 \right] \frac{I_t}{Z_t} = Y_t. \]

(42)

A competitive equilibrium consists of stochastic processes of 15 aggregate endogenous variables, \( \{C_t, I_t, Y_t, N_t, K_t, u_t, Q_t, X_t, W_t, R_t, P_t, m_t, B_t^a, R_{ft}, \Lambda_t\} \) such that 15 equations (42), (41), (29), (3), (37), (19), (40), (28), (30), (9), (27), (32), (34), (23) and (4) hold, where \( G_t \) satisfies (20) and \( \delta_t = \delta(u_t) \).

There may exist two types of equilibrium: bubbly equilibrium in which \( B_t^a > 0 \) for all \( t \) and bubbleless equilibrium in which \( B_t^a = 0 \) for all \( t \). A bubbly equilibrium can be supported by the belief that a new firm may bring a new bubble with a positive probability \( \omega > 0 \). A sentiment shock
\( \theta_t \) can generate fluctuations in the aggregate bubble \( B^2_t \) because households believe that the size of the old bubble relative to that of the new bubble fluctuates randomly over time. A bubbleless equilibrium can be supported by the belief that either old or new firms do not contain any bubble \( (\omega = \theta_t = m_t = 0) \). In the next section, we characterize the steady-state existence conditions for these two types of equilibria.

3. Bayesian Estimation

Since the model has two unit roots, one in the investment-specific technology shock and the other in the TFP shock, we have to appropriately transform the equilibrium system into a stationary one. In Appendix B, we present the transformed equilibrium system and in Appendix C we show that the transformed equilibrium system has a nonstochastic steady state in which all the above transformed variables are constant over time. We solve the transformed system numerically by log-linearizing around the nonstochastic steady state. We seek saddle-path stable solutions. We shall focus on the bubbly equilibrium as our benchmark.

3.1. Shocks and Data

We use Bayesian methods to fit the log-linearized model to the U.S. data. Our model has six orthogonal shocks: persistent and transitory TFP shocks \( (\lambda_{at}, A^n_t) \), the investment-specific technology shock \( Z_t \), the labor supply shock \( \psi_t \), the financial shock \( \zeta_t \), and the sentiment shock \( \theta_t \). We need six data series to identify these shocks. We choose the following five quarterly U.S. time series data: the relative price of investment \( (P_t) \), real per capita consumption \( (C_t) \), real per capita investment in consumption units \( (I_t/Z_t) \), per capita hours \( (N_t) \), and real per capita stock price index (defined as \( P^s_t = Q_tK_{t+1} + B^2_t \) in the model). The first four series are taken from LWZ (2011), and the stock price data is the S&P composite index downloaded from Robert Shiller’s website. We normalize it by the price index for non-durable goods and population. The sample period covers the first quarter of 1975 through the fourth quarter of 2010. More details about the data construction can be found in Appendix A in LWZ (2011).

The sixth data series is the Chicago Fed’s National Financial Conditions Index (NFCI), which is used to identify the financial shock \( \zeta_t \). The NFCI is a comprehensive index on U.S. financial conditions in money markets, debt and equity markets, as well as the traditional and “shadow” banking systems. The NFCI is normalized to have mean zero and standard deviation of one over a sample period extending back to 1973. A positive (negative) number means tight (loose) financial conditions. The data extends back to 1973 and is available at quarterly frequency\(^{10}\). We have also tried several subindex of NFCI (other variation of the NFCI index) and the results are similar.

Besides the standard measurement equations, we include the following measurement equation:

\[ NFCI_t = -f_1 \hat{\zeta}_t - f_2 \hat{Q}_t - f_3 \left( \hat{B}_t - \hat{K}_t \right), \]  

(43)

where \( f_1 > 0, f_2 > 0, f_3 > 0 \), \( \hat{\zeta}_t \) denotes log-deviation from the steady state, and \( \hat{Q}_t, \hat{B}_t, \) and \( \hat{K}_t \) denote the log-deviations from the steady state for the corresponding detrended variables. The intuition is that an increase in either one of \( \hat{\zeta}_t, \hat{Q}_t, \) or \( \hat{B}_t - \hat{K}_t \) will reduce the NFCI and hence reduce the tightness in the overall financial market as revealed in equation (38).\(^{11}\)

In principle, one could use the credit market data such as total debt to identify the credit shock \( \xi_t \) and use the equity market data such as aggregate new equity issuance to identify the equity issuance shock \( \eta_t \). We have not followed this approach because aggregate debt is zero in our model, but firms can borrow and save among themselves. Our model is consistent with the empirical evidence documented by Chari, Christiano, and Kehoe (2008) and Ohanian (2010). They find that the corporate sector typically has substantial cash reserves and thus can be largely self-financing. In addition, our modeling of using one shock to describe the financial market conditions is parsimonious. Our purpose is not to identify all shocks drive the financial market conditions, but to study how the sentiment shock and a single reduced-form financial shock to the financial market conditions affect the real economy.

### 3.2. Parameter Estimates

As in Section 3, we focus on the steady state for the stationary equilibrium in which the capacity utilization rate is equal to 1 and the investment goods price is also equal to 1. Due to the log-linearization solution method, we do not need to parameterize the depreciation function \( \delta (\cdot) \) and the distribution function \( \Phi (\cdot) \). As shown in Appendices C and D, we only need to know the steady-state values of \( \delta (1), \delta' (1), \delta'' (1), \Phi (\varepsilon^*), \) and \( \mu \equiv \frac{\delta (\varepsilon^*) \varepsilon^*}{1 - \Phi (\varepsilon^*)} \), where \( \varepsilon^* \) is the steady-state investment threshold for the shock \( \varepsilon_t \). We treat these values as parameters to be either estimated or calibrated.

We partition the model parameters into three subsets. The first subset of parameters includes the structural parameters for which we use the steady-state relations to calibrate their values. This set of parameters is collected in \( \Psi_1 = \{ \beta, \alpha, \delta (1), \delta' (1), \delta'' (1), \Phi (\varepsilon^*), g_\gamma, \lambda_z, K_0/\bar{K}, \theta, \omega \} \), where \( \hat{\psi} \) is the mean labor supply shock, \( g_\gamma \) is the steady-state gross growth rate of output, \( \lambda_z \) is the steady-state gross growth rate of IST, \( K_0 \) is the detrended capital stock endowed by the new entrants, and \( \bar{K} \) is the detrended steady-state aggregate capital stock. Note that the parameter \( \omega \) does not affect the steady-state bubble-output ratio by Proposition 2 in Appendix C. In addition, as Appendix D shows, it does not affect the log-linearized dynamic system. Thus, we can take any positive value, say, \( \omega = 0.5 \).

As is standard in the literature, we fix the discount factor \( \beta \) at 0.99, the capital share parameter \( \alpha \) at 0.3, and the mean labor supply shock \( \bar{\psi} \) at 0.1. The parameter \( \omega \) is set to 0.5. The remaining parameters are estimated using the Bayesian methods described in Appendix E.

\(^{11}\)We have studied the case without this measurement equation and the case with a measurement error in this equation. The results are similar.
Table 1. Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta$</td>
<td>0.99</td>
<td>Subjective discounting factor</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>0.3</td>
<td>Capital share in production</td>
</tr>
<tr>
<td>$\delta(1)$</td>
<td>0.025</td>
<td>Steady-state depreciation rate</td>
</tr>
<tr>
<td>$\delta_e$</td>
<td>0.020</td>
<td>Exit rate</td>
</tr>
<tr>
<td>$N$</td>
<td>0.25</td>
<td>Steady-state hours</td>
</tr>
<tr>
<td>$g_\gamma$</td>
<td>1.0042</td>
<td>Steady-state gross growth rate of output</td>
</tr>
<tr>
<td>$\lambda_z$</td>
<td>1.0121</td>
<td>Steady-state gross growth rate of investment-specific technology</td>
</tr>
<tr>
<td>$u$</td>
<td>1</td>
<td>Steady-state capacity utilization rate</td>
</tr>
<tr>
<td>$\bar{I}/\bar{Y}$</td>
<td>0.2</td>
<td>Steady-state investment-output ratio</td>
</tr>
<tr>
<td>$K_0/\bar{K}$</td>
<td>0.20</td>
<td>Ratio of capital endowment for an entrant to total capital stock</td>
</tr>
<tr>
<td>$\bar{\theta}$</td>
<td>0.9975</td>
<td>Relative size of the old bubble to the new bubble</td>
</tr>
<tr>
<td>$\omega$</td>
<td>0.5</td>
<td>Fraction of entrants with bubbles</td>
</tr>
</tbody>
</table>

$\alpha$ at 0.3, and the steady-state depreciation rate $\delta(1)$ at 0.025. Using (C.20), we can pin down $\delta'(1)$ to ensure that the steady-state capacity utilization rate is equal to one. We choose $\psi$ such that the steady-state average hours are 0.25 as in the data. Using data from the U.S. Bureau of the Census, we compute the exit rate as the ratio of the number of closed original establishments with non-zero employment to the number of total establishments with non-zero employment. The average annual exit rate from 1990 to 2007 is 7.8 percent, implying about 2 percent of quarterly exit rate. Thus, we set the exit rate $\delta_e$ at 0.02. Using (C.27) in the appendix, we can pin down $\Phi(\varepsilon^*)$ by targeting the steady-state investment-output ratio $(\bar{I}/\bar{Y})$ at 0.20 as in the data, given that we know the other parameter values. We set the growth rate of per capita output $g_\gamma = 1.0042$ and the growth rate of the investment-specific technology $\bar{\lambda}_z = 1.0121$ as in the data reported by LWZ (2011). Using equation (B.6), we can then pin down the average growth rate of TFP, $\bar{\lambda}_a$. Dunne, Roberts and Samuelson (1988) document that the average relative size of entrants to all firms in periods 1972-1982 is about 0.20. We thus set the ratio of the initial capital stock of new entry firms to the average capital stock $K_0/\bar{K}$ to be 0.20. By (23) and (34), the growth rate of bubbles of the surviving firms in the steady state is given by $\bar{\theta} = R_f/g_\gamma$. We use this equation to pin down $\bar{\theta}$, the calibrated value is 0.9975. In summary, Table 1 presents the values assigned to the calibrated parameters in $\Psi_1$.

The second subset of parameters $\Psi_2 = \{h, \Omega, \delta''/\delta'(1), \zeta, \mu\}$ includes the habit formation parameter $h$, the investment-adjustment cost parameter $\Omega$, the capacity utilization parameter $\delta''/\delta'(1)$, the mean value of the financial shock $\zeta$, the elasticity of the probability of undertaking investment at the steady-state cut-off $\mu \equiv \frac{\phi(\varepsilon^*)\varepsilon^*}{1-\Phi(\varepsilon^*)}$. These parameter values are estimated by the Bayesian method.

---

12 In particular, we use 3-month treasury bill rate from 1975Q2-2010Q4 adjusted by the expected inflation rate (from the University of Michigan’s survey of consumer) and take average to get the steady state $R_f$, the value is 1.0017.
Following LWZ (2011), we assume that the prior of $h$ follows the beta distribution with mean 0.3333 and standard deviation 0.235. This prior implies that the two shape parameters in the Beta distribution are given by 1 and 2. The prior density declines linearly as $h$ increases from 0 to 1. The 90 percent interval of this prior density covers most calibrated values for the habit formation parameter used in the literature (e.g., Boldrin, Christiano, and Fisher (2001) and Christiano, Eichenbaum and Evans (2005)).

Following LWZ (2011), we assume that the prior for $\Omega$ follows the gamma distribution with mean 2 and standard deviation 2. The 90% interval of this prior ranges from 0.1 to 6, which covers most values used in the DSGE literature (e.g., Christiano, Eichenbaum, and Evans (2005), Smets and Wouters (2007), Liu, Waggoner, and Zha (2012), and LWZ (2011)).

For $\delta^\prime / \delta^\prime (1)$, we assume that the prior follows the gamma distribution with mean 1 and standard deviation 1. The 90 percent interval of this prior covers the range from 0.05 to 3, which covers most calibrated values for $\delta^\prime / \delta^\prime (1)$ (e.g., Jaimovich and Rebelo (2009)).

For $\zeta$, we assume that the prior follows the beta distribution with mean 0.3 and standard deviation 0.1. The 95 percent interval of this prior density ranges roughly from 0.1 to 0.5. Covas and den Hann (2011) document that $\zeta$ ranges from 0.1 to 0.4 for various sizes of firms. Our prior covers their empirical estimates. We find that our estimate of $\zeta$ is quite robust and not sensitive to the prior distribution.

For $\mu$, we assume that the prior follows the gamma distribution with mean 2 and standard deviation 2. The 90 percent interval of this prior ranges from 0.1 to 6, which is wide enough to cover low elasticity to high elasticity used in the literature. For example, if we assume that $\varepsilon$ follows the Pareto distribution $1 - \varepsilon^{-\varsigma}$, then $\mu = \varsigma$. Wang and Wen (2012) estimate that $\varsigma$ is equal to 2.4, which falls in our range.

For the coefficients in the measurement equation of financial condition index $f_1, f_2, f_3$, we assume that the priors follow the gamma distribution with mean 1 and standard deviation 1. The 90 percent interval of this prior covers fairly large range from 0.05 to 3. We find that our estimates of these parameters are quite robust and not sensitive to the prior distribution.

The third subset of parameters is summarized by $\Psi_3 = \{\rho_i, \sigma_i\}$ for $i \in \{a, z, a^m, \theta, \zeta, \psi\}$, where $\rho_i$ and $\sigma_i$ denote the persistence parameters and the standard deviations of the six structural shocks, respectively. Following Smets and Wouters (2007) and LWZ (2011), we assume that $\rho_i$ follows a beta distribution with mean 0.5 and standard deviation 0.2. Following LWZ (2011), we assume that the prior for $\sigma_i$ follows inverse gamma distribution with mean 0.01 and standard deviation $\infty$, except for $\sigma_\theta$. For the sentiment shock $\theta_t$, we assume that the prior mean of $\sigma_\theta$ is equal to 0.1. The choice of this high prior volatility is based on the fact that the stock price is the main data used to identify the sentiment shock. Since we know that the stock market is very volatile, it is natural to specify a large prior volatility for the sentiment shock.

Table 2 presents the prior distributions of the parameters in groups two $\Psi_2$ and three $\Psi_3$. It also presents the modes, the means, and the 5 and 95 percentiles of the posterior distributions for
Table 2. Prior and Posterior Distributions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior Distribution</th>
<th>Posterior Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distr.</td>
<td>Mean</td>
</tr>
<tr>
<td>$h$</td>
<td>Beta</td>
<td>0.333</td>
</tr>
<tr>
<td>$\Omega$</td>
<td>Gamma</td>
<td>2</td>
</tr>
<tr>
<td>$\delta''/\delta'$</td>
<td>Gamma</td>
<td>1</td>
</tr>
<tr>
<td>$\tilde{\zeta}$</td>
<td>Beta</td>
<td>0.3</td>
</tr>
<tr>
<td>$\mu$</td>
<td>Gamma</td>
<td>2</td>
</tr>
<tr>
<td>$f_1$</td>
<td>Gamma</td>
<td>1</td>
</tr>
<tr>
<td>$f_2$</td>
<td>Gamma</td>
<td>1</td>
</tr>
<tr>
<td>$f_3$</td>
<td>Gamma</td>
<td>1</td>
</tr>
<tr>
<td>$\rho_a$</td>
<td>Beta</td>
<td>0.5</td>
</tr>
<tr>
<td>$\rho_{a^m}$</td>
<td>Beta</td>
<td>0.5</td>
</tr>
<tr>
<td>$\rho_z$</td>
<td>Beta</td>
<td>0.5</td>
</tr>
<tr>
<td>$\rho_\theta$</td>
<td>Beta</td>
<td>0.5</td>
</tr>
<tr>
<td>$\rho_\psi$</td>
<td>Beta</td>
<td>0.5</td>
</tr>
<tr>
<td>$\rho_\zeta$</td>
<td>Beta</td>
<td>0.5</td>
</tr>
<tr>
<td>$\sigma_a$</td>
<td>Inv-Gamma</td>
<td>0.01</td>
</tr>
<tr>
<td>$\sigma_{a^m}$</td>
<td>Inv-Gamma</td>
<td>0.01</td>
</tr>
<tr>
<td>$\sigma_z$</td>
<td>Inv-Gamma</td>
<td>0.01</td>
</tr>
<tr>
<td>$\sigma_\theta$</td>
<td>Inv-Gamma</td>
<td>0.1</td>
</tr>
<tr>
<td>$\sigma_\psi$</td>
<td>Inv-Gamma</td>
<td>0.01</td>
</tr>
<tr>
<td>$\sigma_\zeta$</td>
<td>Inv-Gamma</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.
those parameters obtained by the Metropolis-Hastings algorithm with 200,000 draws.\textsuperscript{13} In later analysis, we choose the posterior modes as the parameter values for all simulations.

Table 2 reveals that our estimates of most parameters are consistent with those in the literature (e.g., LWZ (2011)). We shall highlight some of the estimates. First, the sentiment shock is highly persistent and volatile. The posterior mode and mean of the AR(1) coefficient are equal to 0.9285 and 0.9242, respectively. The posterior mode and mean of the standard error are equal to 0.1839 and 0.1925, respectively. Second, our estimated investment adjustment cost parameter is small. The posterior mode and mean of this parameter are equal to 0.0297 and 0.0337, respectively. This result is important because a large adjustment cost parameter is needed for most DSGE models in the literature to explain the variations in stock market prices or returns. For example, the estimate in Christiano, Motto, and Rostagno (2009) is 29.22. The intuition is that a large investment adjustment cost parameter makes Tobin’s marginal $Q$ very volatile, which helps explain the volatility of the stock market value. By contrast, in our model the aggregate stock market value contains a separate bubble component. The movement of the stock market value is largely determined by the bubble component which is driven largely by the sentiment shock. According to our estimated parameter values, the bubble component accounts for about 14 percent of the stock market value in the steady state. We will show below that this small component plays a dominant role in explaining fluctuations in the stock market as well as macroeconomic quantities.

3.3. Model Fit

To evaluate our model performance, we present in Table 3 the baseline model’s predictions regarding standard deviations, correlations with output, and serial correlations of output, consumption, investment, hours, and stock prices. This table also presents results for the four comparison models that will be discussed later. The model moments are computed using the simulated data from the estimated model when all shocks are turned on. We take the posterior modes as parameter values. Both simulated and actual data are in logs and HP filtered.

From Table 3, we observe that the estimated model matches quite well the empirical moments from the actual data. We highlight two results. First, our model can match closely the stock market volatility in the data (0.1088 versus 0.1082). This result is remarkable because most neoclassical models in finance or macroeconomics have difficulty in explaining the stock market volatility (Shiller (1981)). Second, our model can match the persistence of macroeconomic quantities and stock prices as well as their comovements. Cogley and Nason (1995) point out that many real business cycle models have difficulty in generating the persistence of output because they lack an endogenous amplification and propagation mechanism. Our estimated model with bubbles identifies a new shock, the sentiment shock, and provides a powerful amplification and propagation mechanism for this shock.

\textsuperscript{13}We have checked that our estimates pass Iskrev’s (2010) test of identification.
Table 3. Business Cycles Statistics

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>C</th>
<th>I</th>
<th>N</th>
<th>SP</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Standard Deviations</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Data</td>
<td>0.0170</td>
<td>0.0093</td>
<td>0.0419</td>
<td>0.0179</td>
<td>0.1082</td>
<td>0.0111</td>
</tr>
<tr>
<td>Baseline Model</td>
<td>0.0184</td>
<td>0.0146</td>
<td>0.0429</td>
<td>0.0130</td>
<td>0.1058</td>
<td>0.0106</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>0.0115</td>
<td>0.0095</td>
<td>0.0304</td>
<td>0.0111</td>
<td>0.0132</td>
<td>0.0122</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>0.0150</td>
<td>0.0140</td>
<td>0.0332</td>
<td>0.0157</td>
<td>0.1020</td>
<td>0.0249</td>
</tr>
<tr>
<td>No Bubble</td>
<td>0.0177</td>
<td>0.0165</td>
<td>0.0410</td>
<td>0.0187</td>
<td>0.1028</td>
<td>0.0261</td>
</tr>
<tr>
<td>Extended</td>
<td>0.0246</td>
<td>0.0194</td>
<td>0.0535</td>
<td>0.0125</td>
<td>0.1220</td>
<td>0.0112</td>
</tr>
<tr>
<td><strong>Standard Deviations Relative to Y</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Data</td>
<td>1.0000</td>
<td>0.5452</td>
<td>2.4672</td>
<td>1.0539</td>
<td>6.3714</td>
<td>0.6540</td>
</tr>
<tr>
<td>Baseline Model</td>
<td>1.0000</td>
<td>0.7898</td>
<td>2.3236</td>
<td>0.7029</td>
<td>5.3766</td>
<td>0.5753</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>1.0000</td>
<td>0.8252</td>
<td>2.6335</td>
<td>0.9570</td>
<td>1.1460</td>
<td>1.0568</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>1.0000</td>
<td>0.9293</td>
<td>2.2072</td>
<td>1.0414</td>
<td>6.7769</td>
<td>1.6519</td>
</tr>
<tr>
<td>No Bubble</td>
<td>1.0000</td>
<td>0.9328</td>
<td>2.3152</td>
<td>1.0559</td>
<td>5.8066</td>
<td>1.4768</td>
</tr>
<tr>
<td>Extended</td>
<td>1.0000</td>
<td>0.7885</td>
<td>2.1738</td>
<td>0.5084</td>
<td>4.9564</td>
<td>0.4535</td>
</tr>
<tr>
<td><strong>First Order Autocorrelations</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Data</td>
<td>0.9003</td>
<td>0.9023</td>
<td>0.8671</td>
<td>0.9255</td>
<td>0.7652</td>
<td>0.8620</td>
</tr>
<tr>
<td>Baseline Model</td>
<td>0.8903</td>
<td>0.9258</td>
<td>0.7944</td>
<td>0.7834</td>
<td>0.7607</td>
<td>0.8474</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>0.8303</td>
<td>0.8872</td>
<td>0.7348</td>
<td>0.7699</td>
<td>0.7219</td>
<td>0.8827</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>0.9063</td>
<td>0.9142</td>
<td>0.8295</td>
<td>0.7361</td>
<td>0.7219</td>
<td>0.8112</td>
</tr>
<tr>
<td>No Bubble</td>
<td>0.9372</td>
<td>0.9417</td>
<td>0.8710</td>
<td>0.7817</td>
<td>0.7220</td>
<td>0.7548</td>
</tr>
<tr>
<td>Extended</td>
<td>0.9117</td>
<td>0.9400</td>
<td>0.8365</td>
<td>0.8368</td>
<td>0.7637</td>
<td>0.8574</td>
</tr>
<tr>
<td><strong>Correlation with Y</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Data</td>
<td>1.0000</td>
<td>0.9296</td>
<td>0.9705</td>
<td>0.8208</td>
<td>0.4217</td>
<td>-0.1287</td>
</tr>
<tr>
<td>Baseline Model</td>
<td>1.0000</td>
<td>0.9364</td>
<td>0.8788</td>
<td>0.6133</td>
<td>0.3943</td>
<td>-0.0707</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>1.0000</td>
<td>0.8774</td>
<td>0.7990</td>
<td>0.6759</td>
<td>0.4546</td>
<td>-0.0779</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>1.0000</td>
<td>0.8514</td>
<td>0.7364</td>
<td>0.5554</td>
<td>0.0596</td>
<td>-0.1443</td>
</tr>
<tr>
<td>No Bubble</td>
<td>1.0000</td>
<td>0.8995</td>
<td>0.7101</td>
<td>0.5237</td>
<td>0.0784</td>
<td>0.0703</td>
</tr>
<tr>
<td>Extended</td>
<td>1.0000</td>
<td>0.9582</td>
<td>0.9098</td>
<td>0.6407</td>
<td>0.4978</td>
<td>-0.0797</td>
</tr>
</tbody>
</table>

Note: The model moments are computed using the simulated data (20,000 periods) from the estimated model at the posterior mode. All series are logged and detrended with the HP filter. The columns labeled Y, C, I, N, SP, and P refer, respectively, to output, consumption, investment, hours worked, the stock price, and the relative price investment goods. “No Bubble” corresponds to the model without bubbles. “No sentiment” corresponds to the baseline model without sentiment shocks. “No Stock Price” corresponds to the baseline model without using the stock price data in estimation. “Extended” corresponds to the model in Section 5.2.
4. Economic Implications

In this section, we discuss the model’s empirical implications based on the estimated parameters. We address the following questions: How much does each shock contribute to the variations in the stock market, output, investment, consumption, and hours? What explains the stock market booms and busts? Does the stock market affect the real economy? We then use our model to shed light on two major bubble and crash episodes in the U.S. economy: (i) the internet bubble during late 1990s and its subsequent crash, and (ii) the recent stock market bubble in tandem with the housing bubble and the subsequent Great Recession.

4.1. Relative Importance of the Shocks

Our estimated model helps us evaluate the relative importance of the shocks in driving fluctuations in the growth rates of stock prices and macroeconomic quantities. We do this through the variance decomposition. Table 4 reports this decomposition across the six structural shocks at the business cycle frequency.\footnote{We compute variance decomposition using the spectrum of the linearized models and an inverse first difference filter for stock prices, output, consumption, investment to reconstruct the levels. The spectral density is computed from the state space representation of the model with 2000 bins for frequencies covering that range of periodicities.}

Table 4 shows that the sentiment shock accounts for about 98 percent of the stock market fluctuations. The contribution of the other shocks is negligible. The sentiment shock is transmitted from the stock market to the real economy through the credit constraints. A sentiment shock causes the fluctuations in the credit limit and hence affects a firm’s investment decisions. This in turn affects aggregate investment and aggregate output. Table 4 reveals that the sentiment shock explains about 20 and 31 percent of the fluctuations in investment and output, respectively. The sentiment shock is the dominating force driving the fluctuations in consumption, accounting for about 32 percent of its variation. This is due to the large wealth effect caused by the fluctuations in the stock market value.

The two TFP shocks are important in explaining variations in macroeconomic quantities as in the RBC literature, but they barely affect the stock market fluctuations.

The labor supply shock accounts for most of the fluctuations in hours (about 72 percent). It also contributes to a sizable fraction of fluctuations in output, investment, and consumption. This shock is a reduced-form shock capturing the labor wedge. A similar finding is reported in LWZ (2011) and Justiniano, Primiceri, and Tambalotti (2011).

The permanent IST shock does not explain much of the fluctuations in investment, output, consumption, and hours. This is because our model is required to fit the data of the relative price of the investment goods and the IST shock is tied to the fluctuations in the relative price of investment goods. This result is consistent with the findings reported in Justiniano, Primiceri, and Tambalotti (2011), LWZ (2011), Christiano, Motto and Rostagno (2010), and Liu, Waggoner, and Zha (2012).
Table 4. Variance Decomposition at Business Cycle Frequencies

<table>
<thead>
<tr>
<th>Stock Price</th>
<th>Sentiment</th>
<th>Financial</th>
<th>IST</th>
<th>Agrowth</th>
<th>Atrans</th>
<th>Labor</th>
<th>MeaErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>98.45</td>
<td>0.00</td>
<td>0.22</td>
<td>0.53</td>
<td>0.51</td>
<td>0.29</td>
<td>–</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>0.70</td>
<td>27.61</td>
<td>2.43</td>
<td>23.32</td>
<td>5.94</td>
<td>39.99</td>
<td>–</td>
</tr>
<tr>
<td>No Bubble</td>
<td>–</td>
<td>0.01</td>
<td>1.70</td>
<td>3.11</td>
<td>0.42</td>
<td>1.21</td>
<td>93.55</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>–</td>
<td>0.00</td>
<td>1.14</td>
<td>4.49</td>
<td>0.54</td>
<td>0.90</td>
<td>92.93</td>
</tr>
<tr>
<td>Extended</td>
<td>73.37</td>
<td>11.26</td>
<td>0.04</td>
<td>1.78</td>
<td>6.44</td>
<td>7.09</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>30.56</td>
<td>0.11</td>
<td>0.93</td>
<td>18.09</td>
<td>31.17</td>
<td>19.13</td>
<td>–</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>14.29</td>
<td>14.48</td>
<td>1.21</td>
<td>35.48</td>
<td>2.34</td>
<td>32.21</td>
<td>–</td>
</tr>
<tr>
<td>No Bubble</td>
<td>–</td>
<td>0.46</td>
<td>21.45</td>
<td>31.00</td>
<td>15.03</td>
<td>32.05</td>
<td>0.00</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>–</td>
<td>0.09</td>
<td>22.49</td>
<td>12.97</td>
<td>31.22</td>
<td>33.23</td>
<td>0.00</td>
</tr>
<tr>
<td>Extended</td>
<td>17.22</td>
<td>2.45</td>
<td>1.18</td>
<td>53.59</td>
<td>13.04</td>
<td>12.53</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>19.54</td>
<td>0.72</td>
<td>4.17</td>
<td>36.22</td>
<td>25.31</td>
<td>14.04</td>
<td>–</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>23.94</td>
<td>60.36</td>
<td>0.40</td>
<td>6.75</td>
<td>0.92</td>
<td>7.63</td>
<td>–</td>
</tr>
<tr>
<td>No Bubble</td>
<td>–</td>
<td>1.85</td>
<td>53.78</td>
<td>20.68</td>
<td>6.82</td>
<td>16.88</td>
<td>0.00</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>–</td>
<td>0.49</td>
<td>55.95</td>
<td>20.73</td>
<td>10.27</td>
<td>12.56</td>
<td>0.00</td>
</tr>
<tr>
<td>Extended</td>
<td>10.49</td>
<td>1.16</td>
<td>6.27</td>
<td>37.47</td>
<td>36.18</td>
<td>8.43</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consumption</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>31.68</td>
<td>0.03</td>
<td>0.38</td>
<td>18.68</td>
<td>29.78</td>
<td>19.45</td>
<td>–</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>3.97</td>
<td>0.64</td>
<td>1.45</td>
<td>49.10</td>
<td>2.58</td>
<td>42.26</td>
<td>–</td>
</tr>
<tr>
<td>No Bubble</td>
<td>–</td>
<td>0.02</td>
<td>6.11</td>
<td>58.10</td>
<td>11.98</td>
<td>23.79</td>
<td>0.00</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>–</td>
<td>0.00</td>
<td>7.70</td>
<td>36.37</td>
<td>27.80</td>
<td>28.13</td>
<td>0.00</td>
</tr>
<tr>
<td>Extended</td>
<td>19.92</td>
<td>3.67</td>
<td>0.52</td>
<td>57.25</td>
<td>3.62</td>
<td>15.02</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>4.20</td>
<td>0.41</td>
<td>2.10</td>
<td>19.00</td>
<td>2.67</td>
<td>71.62</td>
<td>–</td>
</tr>
<tr>
<td>No Stock Price</td>
<td>4.42</td>
<td>19.30</td>
<td>0.04</td>
<td>1.65</td>
<td>1.68</td>
<td>72.91</td>
<td>–</td>
</tr>
<tr>
<td>No Bubble</td>
<td>–</td>
<td>0.30</td>
<td>21.07</td>
<td>21.24</td>
<td>10.36</td>
<td>47.04</td>
<td>0.00</td>
</tr>
<tr>
<td>No Sentiment</td>
<td>–</td>
<td>0.09</td>
<td>20.70</td>
<td>15.79</td>
<td>12.62</td>
<td>50.81</td>
<td>0.00</td>
</tr>
<tr>
<td>Extended</td>
<td>2.50</td>
<td>0.77</td>
<td>5.42</td>
<td>10.08</td>
<td>15.03</td>
<td>66.19</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: “No Bubble” corresponds to the model without bubbles. “No sentiment” corresponds to the baseline model without sentiment shocks. “No Stock Price” corresponds to the baseline model without using the stock price data in estimation. “Extended” corresponds to the model in Section 5.2. “MeaErr” denotes the measurement error in the measurement equation for the stock prices.
Our estimated financial shock is highly persistent, but accounts for a negligible fraction of fluctuations in stock prices, investment, consumption, output, and hours. The intuition is that the sentiment shock is similar to the financial shock since both shocks affect the credit constraints. However, the sentiment shock displaces the financial shock once the stock price data is included in the estimation. Table 4 shows that when the stock price data is not included in the estimation, the financial shock becomes much more important, explaining about 28, 14, 60 percent of the variations in stock prices, output, and investment, respectively. However, this model cannot explain the stock market volatility. As Table 3 reveals, the model predicted stock price volatility is about 0.01, while the volatility is about 0.11 in the data.

4.2. What Explains Stock Market Booms and Busts?

From the variance decomposition, we find that the sentiment shock is the most important driving force to explain the fluctuation in the stock market. Why are other shocks not important? To address this question, we derive the log-linearized detrended stock price as

\[ \hat{P}_t^s = \frac{\hat{K}\hat{Q}}{\hat{P}^s}(\hat{Q}_t + \hat{K}_{t+1}) + \frac{\hat{P}_a}{\hat{P}^s}\hat{B}_t^a, \]  

(44)

where a variable with a tilde denotes its steady state detrended value and a variable with a hat denotes the relative deviation from the steady state. We also use equation (D.13) in the appendix to derive

\[ \hat{B}_t^a = -\hat{\Lambda}_t + \left[1 - \beta(1 - \delta_e)\hat{\theta}\right]\varphi_G \sum_{j=1}^{\infty} E_t(\hat{P}_{t+j} - \hat{Q}_{t+j}) + \frac{1 - (1 - \delta_e)\hat{\theta}}{(1 - \delta_e)\hat{\theta}} \sum_{j=1}^{\infty} E_t\hat{m}_{t+j}. \]  

(45)

In the above equation, \( \varphi_G \) is a negative number given in (D.7) in the appendix. Equation (44) shows that the variations in the stock price are determined by the variations in marginal \( Q, \hat{Q}_t, \) the capital stock, \( \hat{K}_{t+1}, \) and the bubble, \( \hat{B}_t^a. \) As is well known in the literature, the capital stock is a slow-moving variable and cannot generate large fluctuations in the stock price. The variation in marginal \( Q \) can be large if the capital adjustment cost parameter is large. According to our estimation, this parameter is small and hence movements in marginal \( Q \) cannot generate large fluctuations in the stock price. Equation (45) reveals that the variation in the bubble is largely determined by the variation in the expected future relative size of the aggregate bubble to the new bubble, \( \hat{m}_{t+j}, \) because the variations in \( \hat{\Lambda}_t, \hat{P}_{t+j} \) and \( \hat{Q}_{t+j} \) are small. The variation in \( \hat{m}_{t+j} \) is determined by the sentiment shock \( \hat{\theta}_{t+j} \) as shown in equation (32). According to our estimation, the sentiment shock is the dominant driver of the stock market fluctuations, even though the bubble component accounts for a small share of the stock price (\( \hat{B}_a^a/\hat{P}^s = 0.14 \)) in the deterministic steady state.

Why are the other shocks not important drivers of the stock market fluctuations? We first note that the IST shock cannot be the primary driver when we allow the model to fit both the stock price
data and the relative price of investment goods data. This is because the price of the investment goods is countercyclical, but the stock market value is procyclical. A positive IST shock can reduce the price of the investment goods, but it also reduce the marginal $Q$ and hence the stock market value.

The labor supply shock cannot be the primary driver either. Since it affects the marginal utility of leisure directly, it is an important shock to explain the variation in hours. However, it cannot generate large movements in the stock price because its impact on the marginal $Q$ is small.

We next turn to the two TFP shocks, which are considered to be the main driver of the fluctuations in real quantities in the RBC literature. Figure 2 shows that a permanent TFP shock cannot be an important driver of the stock market movements. A permanent TFP shock reduces marginal $Q$ because it reduces future marginal utility of consumption due to the wealth effect. Though it raises the bubble in the stock price, the net impact on the stock price is negative and small. As Figure 2 shows, the impulse responses of output are similar to those of the stock price. This implies that the volatility of the stock market would be counterfactually similar to that of output growth if the permanent TFP shock were the driving force.

As illustrated in Figure 2, although a positive transitory TFP shock raises both marginal $Q$ and the bubble, its impact on the stock price is small, compared to that on consumption, investment, and output. Thus, it cannot explain the high relative volatility of the stock market.\footnote{Note that both a permanent and a transitory TFP shocks can generate a fall in hours on impact. This is due to the presence of habit formation utility and investment adjustment costs (see, Fransis and Ramey (1998) and Smets and Wouters (2007)).}

Recently, Jermann and Quadrini (2012) and LWZ (2011) have found that the financial shock is important for business cycles. Figure 2 shows that once the stock market data is incorporated, the role of the financial shock is significantly weakened. The intuition is that an increase in the financial shock causes the credit constraints to be relaxed, thereby raising investment. As capital accumulation rises, marginal $Q$ falls, causing the fundamental value of the stock market to fall. In addition, the bubble component also falls on impact because there is no room for a bubble as the credit constraints are already relaxed. As a result, the net impact of an increase in the financial shock is to reduce the stock price, implying that the financial shock cannot drive the stock market cyclicalilty. In addition, consumption also falls on impact. Thus, the financial shock cannot generate comovement between consumption and investment.

Now, consider the impact of a sentiment shock presented in Figure 3. A positive sentiment shock raises the size of the bubble, causing the credit constraints to be relaxed. Thus, firms make more investment. As capital accumulation rises, marginal $Q$ falls so that the fundamental value of the stock market falls. But this fall is dominated by the rise in the bubble component, causing the stock price to rise on impact. This in turn causes consumption to rise due to the wealth effect. The capacity utilization rate also rises due to the fall of marginal $Q$, causing the labor demand to rise. The rise in the labor demand is dominated the fall in the labor supply due to the wealth effect, and hence labor hours falls on the impact period, but rises afterward. The increased capacity utilization
Figure 2: Impulse responses to a one-standard-deviation permanent TFP shock ($A_t^p$), transitory TFP shock ($A_t^m$), financial shock ($\zeta_t$) in the baseline model. All vertical axes are in percentage. We compute the responses for 20,000 draws from the posterior distributions. The solid line is the median value, the dashed lines indicate 90 percent confidence interval.
Figure 3: Impulses responses to a one-standard-deviation sentiment shock in the baseline model. All vertical axes are in percentage. We compute the responses for 20,000 draws from the posterior distributions. The solid line is the median value, the dashed lines indicate 90 percent confidence interval.

Notice that on impact the stock price rises by about 8 percent, which is much larger than the impact effects on output (0.2 percent), consumption (0.2 percent) and investment (0.3 percent). This result indicates that the sentiment shock can generate a large volatility of the stock market relative to that of consumption, investment, and output. The sentiment shock has a small impact on the price of investment goods. This allows the movements of the price of investment goods to be explained by the IST shock.

The top panel of Figure 4 presents the smoothed estimate of the sentiment shock $\hat{\theta}_t = \ln(\theta_t/\bar{\theta})$. The middle panel plots the historical demeaned logged stock price growth data and the fitted demeaned logged stock price growth from the model when all shocks are turned on and when only the sentiment shock is turned on. We cannot find visual differences in the three lines, indicating that the sentiment shock drives almost all of the stock market fluctuations. Comparing these two panels reveals that the fluctuations in the sentiment shock and in the stock market follow an almost identical pattern. This implies that the boom of the stock market is associated with the optimistic
Figure 4: The top panel plots the smoothed sentiment shocks estimated from the baseline model. The middle panel plots the year-on-year growth data of the actual stock prices (labeled “Data”) and the smoothed estimates of the stock prices based on all seven shocks (labeled “Model”) and on the sentiment shock only (labeled “Sentiment”). The bottom panel plots the smoothed estimates of the bubble and the fundamental components of stock prices.
sentiment of growing bubbles and the bust is associated with the pessimistic sentiment of shrinking bubbles or the collapse of bubbles. The bottom panel of Figure 4 presents the two components of the stock price when all shocks are turned on: demeaned growth of logged bubble values and demeaned growth of logged fundamental values. This panel reveals that the movements of the bubble component and the stock price follow an almost identical pattern. But the movements of the fundamental component and the stock price follow an almost opposite pattern, indicating that the stock market fluctuations cannot be explained by fundamentals.

4.3. Understanding Major Bubble and Crash Episodes

The U.S. economy has experienced two major bubble and crash episodes: (i) the internet bubble during the late 1990s and its subsequent crash, and (ii) the recent stock market bubble in tandem with the housing bubble and the subsequent Great Recession. Can our model help understand these two episodes? To address this question, we compute the paths of stock prices, business investment, consumption, and labor hours implied by our estimated model when all shocks are turned on and when the sentiment shock alone is turned on. We then compare these paths with the actual data during these two episodes.

The top left panel of Figure 5 shows that since the first quarter of 1995, the per capita stock price in the data had experienced persistent year-on-year growth until the third quarter of 2000. The highest year-on-year growth rate was about 30 percent in the third quarter of 1997. Since the fourth quarter of 2000, the stock market had experienced persistent declines until reaching the bottom in the fourth quarter of 2001. In that quarter, the stock market declined by about 40 percent relative to the same quarter in the last year. After that quarter, the stock market gradually recovered. We find that our estimated model with all shocks turned on fits the actual data almost exactly. In addition, fluctuations in stock prices are almost entirely accounted for by the sentimental shock alone. The effects of these shocks are transmitted and propagated through credit constraints to the real economy.

The other three panels of Figure 5 plot analogous lines corresponding to investment, consumption, and labor hours, respectively. We find that since the first quarter of 2000, business investment had experienced persistent year-on-year growth until the fourth quarter of 2000. Starting in the first quarter of 2001, business investment fell persistently, reaching the bottom in the third quarter of 2001. In that quarter, investment declined by 7.5 percent relative to the same quarter in the last year. Consumption had experienced a persistent growth since the first quarter of 1995 until the second quarter of 2000. Since the third quarter of 2000, consumption growth slowed down, but was still positive. In the third quarter of 2001, consumption growth was close to zero. Labor hours had experienced persistent growth since the first quarter of 1995 until the second quarter of 2000. Since the second quarter of 2000 until the first quarter of 2004, hours had declined persistently. The lowest year-on-year decline was about 6 percent in the first quarter of 2002.

Figure 5 shows that our estimated DSGE model fits the actual data of macroeconomic quantities
Figure 5: The internet bubble and Great Recession episodes. This figure plots year-on-year growth rate of stock prices, investment, consumption, and labor hours. The shaded area is the NBER recession bar. Data: actual data. Model: model fitted data when all shocks are turned on. Sentiment: model fitted data when only the sentiment shock is turned on.
almost exactly. In addition, the sentiment shock plays an important role in accounting for the fluctuations in those quantities. In particular, the sentiment shock is the dominant driving force behind the fluctuations in investment. We also find that there are sizable gaps between the actual consumption and labor data and the simulated data when the sentiment shock alone is turned on. This suggests that other shocks are also important in driving the variations in consumption and hours. In particular, the permanent TFP shock accounts for a large share of the variation in consumption and the labor supply shock accounts for most of the variation in labor hours, as suggested by the variance decomposition reported in Table 4.

We now turn to a discussion on the recent stock market bubble in tandem with the housing bubble and the subsequent Great Recession. The top left panel of Figure 5 shows that the stock price had experience persistent growth since the first quarter of 2004 until the third quarter of 2007. Since the fourth quarter of 2007, the stock price declined, reaching the lowest drop of 51 percent in the first quarter of 2009 relative to the same quarter in the last year. After that quarter, the stock market gradually recovered. Unlike the internet bubble and the subsequent crash, the recent stock market boom was relatively mild, but the crash was much severer. The greatest drop in the stock price was much larger (51 percent versus 40 percent).

The other three panels of Figure 5 show that the largest drop in investment during the Great Recession was also much larger than that in 2001 recession (18 percent versus 7.5 percent). Unlike in 2001 recession, consumption declined in the Great recession, reaching the largest drop of about 3 percent in the second quarter of 2009. In addition, labor hours dropped by about 10 percent in the third quarter of 2009.

As in the case of the internet bubble and crash, our estimated model fits the actual data almost exactly when all shocks are turned on. Unlike the internet bubble and crash episode, the sentiment shock plays a more important role during the Great recession in accounting for consumption growth. The large drop in the stock market caused by the sentiment shock generated a large negative wealth effect, which reduced households consumption. In particular, the sentiment shock alone can account for almost all of the consumption drop in the second quarter of 2009. As in the case of the internet bubble episode, the sentiment shock alone can explain almost all the fluctuations in the stock price and large part of the fluctuations in investment. But it did not play a significant role in account for the drop in labor hours. For example, it only accounted for about 13 percent of the drop of hours in the third quarter of 2009. As revealed by the variance decomposition in Table 4, the labor supply shock plays the most important role in accounting for the variation in hours. This is particularly true for the Great Recession. The labor supply shock captures the labor wedge and may be interpreted as a reduced form representation of the labor market friction. Our result suggests that labor market frictions played a significant role in accounting for drops in hours growth during the Great Recession. Modeling such frictions is an interesting future research topic, which is beyond the scope of this paper.
5. Understanding the Sentiment Shock

In this section, we conduct various sensitivity analyses and robustness checks to understand the nature of the sentiment shock.

5.1. Two Alternative Models

To further understand the role of the sentiment shock in economic fluctuations, we estimate two alternative models without this shock. The first alternative model is derived from our baseline model presented in Section 2 after removing the sentiment shock in equation (25) and setting \( \theta_t = \bar{\theta} = 0.9975 \). In the second alternative model, we replace the credit constraint (12) with the Kiyotaki-Moore type constraint:

\[
\frac{L_{t+1}^j}{R_{ft}} \leq (1 - \delta_e)\xi_t Q_t K_{t+1}^j. \tag{46}
\]

The resulting equilibrium is identical to the bubbleless equilibrium in our baseline model. In addition, in order to make the above two models flexible enough to match the stock prices and to avoid the stochastic singularity problem, we add measurement errors in the observation equation for stock prices. Table 5 presents the variance decompositions for the two estimated alternative models.

We find that the measurement errors explain almost all of the stock market volatility in the two alternative models. In particular, they explain about 93 percent of the fluctuations in the stock prices in the alternative model without sentiment shocks. The IST shock and two TFP shocks together explain about 87 percent of the investment fluctuation. The impact of the financial shock is still negligible as in our baseline model. The large impact of the measurement errors indicate that these models are misspecified.

Similar patterns emerge in the alternative model without bubbles as revealed from Table 4. In particular, the measurement errors now explain 94 percent of the fluctuations in the stock prices, and the IST shock and two TFP shocks together explain about 80 of the fluctuations in the investment. Again, the financial shock plays a negligible role.

To compare the performance of our baseline model with that of the alternative models, we first compute the marginal likelihoods based on the Laplace approximation. We find that the log marginal likelihoods for our baseline model, the model without sentiment shocks, the model without bubbles are equal to 2226.9, 2098.4, and 2092.0, respectively. This suggests that the data favor our baseline model.

We then report the business cycle moments based on the simulated data from the two alternative models in Table 3. Compared to the baseline model, the two alternative models performs much worse in the following two dimensions. First, the model without sentiment shocks and the model without bubble counterfactually predict that the stock market and output are almost uncorrelated,
though they can fit the stock prices volatilities quite well due to the measurement errors. Thus, the sentiment shock not only helps explain the stock market volatility, but also plays an important role in driving the comovement between the stock market and the real economy. Second, the two alternative models overpredict the volatility of the relative price of investment goods, which is about twice as large as in the data.

5.2. Consumer Sentiment Index

In our model, the sentiment shock is an unobserved latent variable. We infer its properties from our six time series of the U.S. data using an estimated model. We find that the consumer sentiment index (CSI) published monthly by the University of Michigan and Thomson Reuters is highly correlated with our sentiment shock as illustrated in Figure 6. The correlation is 0.61. We now incorporate this data in the estimation and consider the following measurement equation:

\[ CSI_t = CSI_t + b_1 \hat{\theta}_t + b_2 \Delta \hat{Y}_t + b_3 \Delta \hat{Y}_{t-1} + b_4 \Delta \hat{Y}_{t-2} + b_5 \Delta \hat{Y}_{t-3} + \varepsilon_{cci,t}^{err}, \]

where \( \Delta \) denotes the first difference operator. In this equation, we allow for measurement errors \( \varepsilon_{cci,t}^{err} \) and the correlation between SCI and business cycles (i.e., output growth in the past four quarters). We also allow the sentiment shock to be correlated with other shocks in the model in that

\[
\hat{\theta}_t = \hat{\theta}_{1t} + \hat{\theta}_{2t}, \\
\hat{\theta}_{1t} = \rho \hat{\theta}_{1t-1} + \hat{\varepsilon}_{\theta,t}, \\
\hat{\theta}_{2t} = a_1 \hat{\zeta}_t + a_2 \hat{\Lambda}_t + a_3 \hat{\lambda}_{a,t} + a_4 \hat{\lambda}_{z,t} + a_5 \hat{\psi}_t,
\]

where \( \lambda_{a,t} = A_t^p / A_{t-1}^p \) and \( \lambda_{z,t} = Z_t / Z_{t-1} \).

Tables 3 and 4 present the results based on the estimated parameter values.\(^{17}\) Table 4 shows that the impact of the sentiment shock is weakened compared to the baseline model. But it is still the dominant force driving the stock market fluctuations, explaining about 73 percent of the variation. It also explains a sizable fraction of the variations in real quantities. In particular, it explains about 17, 10 and 20 percent of the variations in output, investment and consumption, respectively. The two TFP shocks are the most important force in explaining these quantities. But they are still not important in explaining the stock market fluctuations. Table 3 shows that the extended model and the baseline model perform almost equally well in explaining business cycle statistics.

\(^{16}\)This index is normalized to have a value of 100 in December 1964. At least 500 telephone interviews are conducted each month of a continental United States sample (Alaska and Hawaii are excluded). Five core questions are asked. An important objective of this index is to judge the consumer’s level of optimism/pessimism.

\(^{17}\)The parameter estimates are available upon request.
5.3. A Hybrid Model

Our baseline model has abstracted away from many other potentially important shocks such as news shocks or uncertainty shocks. Thus, it is possible that the sentiment shock is not important at all in explaining stock prices and real variables if other shocks are taken into account. To examine this possibility, we follow the methodology of Ireland (2004) that combines the DSGE model with the VAR model. We then estimate this hybrid model using Bayesian methods. Following Ireland (2004), we now shut down all the shocks in the baseline model except the sentiment shock, and introduce four measurement errors into the measurement equations for the data \( \{ \Delta P^\text{Data}_t, \Delta C^\text{Data}_t, \Delta I^\text{Data}_t, \ln N^\text{Data}_t \} \). Specifically, let

\[
\begin{bmatrix}
\Delta P^\text{Data}_t \\
\Delta C^\text{Data}_t \\
\Delta I^\text{Data}_t \\
\ln N^\text{Data}_t 
\end{bmatrix}
= \begin{bmatrix}
\Delta \hat{P}_t \\
\Delta \hat{C}_t \\
\Delta \hat{I}_t \\
\hat{N}_t 
\end{bmatrix} + \begin{bmatrix}
\ln (g_\gamma) \\
\ln (g_\gamma) \\
\ln (g_\gamma) \\
\ln (\bar{N}) 
\end{bmatrix} + \nu_t, \tag{47}
\]

where \( \nu_t \) is the vector contains four measurement errors, \( g_\gamma \) is the gross growth rate of output, and \( \bar{N} \) is the average hours in the data. Following Ireland (2004), we assume that the measurement errors \( \nu_t \) follow a VAR(1) process:

\[
\nu_t = A \nu_{t-1} + B \epsilon_{\nu,t}, \tag{48}
\]

\[\text{We thank Tao Zha for suggesting us to conduct this analysis.}\]
where $\mathcal{A}$ is the coefficient matrix and $\mathcal{B}$ is assumed to be lower-triangle such that the innovations in $\hat{\epsilon}_{\nu,t}$ are orthogonal to each other.

The measurement errors in equation (48) can be considered as a combination of all omitted structural shocks in our baseline model and allow for potential model misspecifications. We allow the measurement errors to be flexible enough so that the data do not necessarily be driven by the sentiment shock. The idea is that, if the sentiment shock is not the driving force, then equations (47) and (48) form a first-order Bayesian VAR system and the measurement errors should be important in explaining fluctuations in the data of $\{\Delta P_{sData}^{t}, \Delta C_{t}^{Data}, \Delta I_{t}^{Data}, \ln N^{Data}\}$. On the other hand, if the baseline model is well specified and the sentiment shock is the main source of fluctuations, then the estimated measurement errors will be unimportant.

The variance decomposition shows that the sentiment shock remains the single most important factor for the stock price variation although its importance is somewhat reduced. It explains about 82 percent of the variation in the stock prices. It still accounts for a significant fraction of fluctuations in investment, consumption and output, explaining about 26, 38, 35 percent, respectively. As in the baseline model, the sentiment shock is not important to explain the fluctuation in hours. We also find that the estimates of the common parameters in the hybrid model are very similar to those in the baseline model. The smoothed sentiment shock is still highly correlated with the consumer sentiment data, the correlation is about 0.73. These results suggest that the importance of the sentiment shock is robust to the model variation and specification of different shocks.

6. Conclusion

Stock markets are highly volatile and it is challenging to explain their movements entirely by fundamentals. Many people believe that bubbles, fads or irrationality may play an important role in determining stock prices. This idea has been developed extensively in the theoretical literature. However, the development of the empirical literature is hindered by the lack of identification of bubbles using the VAR approach or other reduced-form regression analysis. As a result, the empirical importance of bubbles for the stock market and for the real economy is unclear.

The main contribution of this paper is to provide a Bayesian DSGE model of stock market bubbles and business cycles. Stock market bubbles emerge endogenously through a positive feedback loop mechanism supported by self-fulfilling beliefs. Using Bayesian methods, we identify a sentiment shock that drives the movements of bubbles and hence stock prices. Unlike many other demand side shocks such as news shocks and uncertainty shocks, the sentiment shock can generate comovements among consumption, investment, hours, output and stock prices. Our Bayesian estimation shows that the sentiment shock explains most of the stock market volatility and a sizable fraction of the variations in investment, consumption, and output. It is the driving force behind the comovements between stock prices and macroeconomic quantities. Historical decomposition of shocks shows that the sentiment shock is the dominant force for accounting for the internet bubbles.
and the Great Recession.

In addition to the empirical contribution, our paper also makes a theoretical contribution to the literature on rational bubbles by modeling recurrent bubbles in an infinite-horizon DSGE framework. Our theoretical model is useful to address many other quantitative or empirical questions. For example, our model focuses on the real side and does not consider inflation and monetary policy. Should monetary policy respond to asset price bubbles? Miao, Wang and Xu (2012) study this question by embedding the present model in a dynamic new Keynesian framework.
References


Basu, Susanto and Brent Bundick, 2011, Uncertainty Shocks in a Model of Effective Demand, working paper, Boston College.


Christiano, Lawrence, Roberto Motto and Massimo Rostagno, 2012, Risk Shocks, working paper, Northwestern University.


Gertler, Mark and Nobuhiro Kiyotaki, 2010, Financial Intermediation and Credit Policy in Business Cycle Analysis, working paper, NYU.


Miao, Jianjun and Pengfei Wang, 2011a, Bubbles and Credit Constraints, working paper, Boston University and HKUST.

Miao, Jianjun and Pengfei Wang, 2011b, Sectoral Bubbles and Endogenous Growth, working paper, Boston University and HKUST.

Miao, Jianjun and Pengfei Wang, 2012a, Banking Bubbles and Financial Crisis, working paper, Boston University and HKUST.


Miao, Jianjun, Pengfei Wang, and Lifang Xu, 2012, Stock Market Bubbles and Unemployment, working paper, Boston University and HKUST.

Miao, Jianjun, Pengfei Wang, and Zhiwei Xu, 2012, Stock Market Bubbles and Monetary Policy, Boston University and HKUST.


Appendix

A Proof of Proposition 1:

We use a conjecture and verification strategy to find the decision rules at the firm level. We first study the optimal investment problem by fixing the capacity utilization rate \( u_j^t \). Using (14) and (16), we can write firm \( j \)'s dynamic programming problem as

\[
v_t(\varepsilon_j^t)K_j^t + b_{t,\tau}(\varepsilon_j^t) - v_{Lt}(\varepsilon_j^t)L_j^t = \max_{I_j^t, L_{i+1}^t} u_j^t R_t K_j^t - P_t I_j^t - L_j^t + \frac{L_{i+1}^t}{R_{ft}}
\]

\[
+ Q_t[(1 - \delta_j^t)K_j^t + \varepsilon_j^t I_j^t] + B_{t,\tau} - Q_{Lt}L_{i+1}^t,
\]

subject to the investment constraint:

\[
0 \leq P_t I_j^t \leq u_j^t R_t K_j^t - L_j^t + \frac{L_{i+1}^t}{R_{ft}} + \eta_t K_j^t.
\]

(A.1)

For \( \varepsilon_j^t \leq P_t/Q_t \), \( I_j^t = 0 \). Optimizing over \( L_{i+1}^t \) yields \( Q_{Lt} = 1/R_{ft} \). For \( \varepsilon_j^t \geq P_t/Q_t \), the optimal investment level must reach the upper bound in the above investment constraint. We can then immediately derive the optimal investment rule in (18). In addition, the credit constraint (17) must bind so that

\[
\frac{1}{R_{ft}}L_{i+1}^t = Q_t \xi_t K_j^t + B_{t,\tau}.
\]

(A.3)

Substituting the optimal investment rule and \( Q_{Lt} = 1/R_{ft} \) into (A.1) yields:

\[
v_t(\varepsilon_j^t)K_j^t + b_{t,\tau}(\varepsilon_j^t) - v_{Lt}(\varepsilon_j^t)L_j^t = u_j^t R_t K_j^t + Q_t(1 - \delta_j^t)K_j^t + B_{t,\tau} - L_j^t
\]

\[
+ \max\{Q_t\varepsilon_j^t/P_t - 1, 0\} \times \left(u_j^t R_t K_j^t + \eta_t K_j^t - L_j^t + \frac{L_{i+1}^t}{R_{ft}}\right).
\]

(A.4)

Since \( u_j^t \) is determined before observing \( \varepsilon_j^t \), it solves the following problem:

\[
\max_{u_j^t} u_j^t R_t K_j^t + Q_t(1 - \delta_j^t)K_j^t + G_t u_j^t R_t K_j^t,
\]

(A.5)

where \( G_t \) is defined by (20). We then obtain the first order condition

\[
R_t(1 + G_t) = Q_t \delta'(u_j^t).
\]

(A.6)

Since \( \delta_j^t = \delta(u_j^t) \) is convex, this condition is also sufficient for optimality. From this condition, we can immediately deduce that optimal \( u_j^t \) does not depend on firm identity so that we can remove the superscript \( j \).
By defining \( \delta_t \equiv \delta(u_t) \), (A.4) becomes

\[
v_t(\varepsilon^j_t)K^j_t + b_{t,\tau}(\varepsilon^j_t) - v_{Lt}(\varepsilon^j_t)L^j_t
= u_tR_tK^j_t + Q_t(1 - \delta_t)K^j_t + B_{t,\tau} - L^j_t
+ \max\{Q_t\varepsilon^j_t/P_t - 1, 0\} \times \left( u_tR_tK^j_t + q_tK^j_t - L^j_t + \frac{P_{t+1}}{R_{ft}} \right),
\]

where \( L^j_{t+1}/R_{ft} \) is given by (A.3). Matching coefficients yields:

\[
v_t(\varepsilon^j_t) = \begin{cases} u_tR_t + Q_t(1 - \delta_t) + (Q_t\varepsilon^j_t/P_t - 1)(u_tR_t + q_t + \xi_tQ_t) & \text{if } \varepsilon^j_t \geq \frac{P_t}{Q_t} \\ u_tR_t + Q_t(1 - \delta_t) & \text{otherwise} \end{cases},
\]

(A.7)

\[
b_{t,\tau}(\varepsilon^j_t) = \begin{cases} (Q_t\varepsilon^j_t/P_t - 1)B_{t,\tau} & \text{if } \varepsilon^j_t \geq \frac{P_t}{Q_t} \\ B_{t,\tau} & \text{otherwise} \end{cases},
\]

(A.8)

and

\[
v_{Lt}(\varepsilon^j_t) = \begin{cases} Q_t\varepsilon^j_t/P_t - 1 & \text{if } \varepsilon^j_t \geq \frac{P_t}{Q_t} \\ 1 & \text{otherwise} \end{cases}.
\]

Using equation (16), we then obtain (21) and (22) and (23). Q.E.D.

B Stationary Equilibrium

We define the following transformed variables:

\[
\begin{align*}
\tilde{C}_t & \equiv C_t \Gamma_t, \quad \tilde{I}_t \equiv I_t / \Gamma_t, \quad \tilde{Y}_t \equiv Y_t / \Gamma_t, \quad \tilde{K}_t \equiv K_t / \Gamma_{t-1}Z_{t-1}, \\
\tilde{P}^a_t & \equiv \frac{P^a_t}{\gamma_t}, \quad \tilde{B}^a_t \equiv \frac{B^a_t}{\gamma_t}, \quad \tilde{X}_t \equiv X_t / \gamma_t, \quad \tilde{W}_t \equiv W_t / \gamma_t, \\
\tilde{Q}_t & \equiv Q_tZ_t, \quad \tilde{P}_t = P_tZ_t, \quad \tilde{R}_t = R_tZ_t, \quad \tilde{\Lambda}_t \equiv \Lambda_t\Gamma_t,
\end{align*}
\]

where \( \Gamma_t = Z_t^{\alpha_t} A_t \). The other variables are stationary and there is no need to scale them. To be consistent with a balanced growth path, we also assume that \( K_{0t} = \Gamma_{t-1}Z_{t-1}K_0 \), where \( K_0 \) is a constant.

The six shocks in the model are given by

1. The permanent TFP shock,

\[
A^p_t = A^p_{t-1}\lambda_{at}, \quad \ln \lambda_{at} = (1 - \rho_a) \ln \tilde{\lambda}_a + \rho_a \ln \lambda_{a,t-1} + \varepsilon_{at}.
\]

(B.1)

2. The transitory TFP shock,

\[
\ln A^m_t = \rho_{a^m}\ln A^m_{t-1} + \varepsilon_{a^m,t}.
\]

(B.2)

3. The IST shock,

\[
Z_t = Z_{t-1}\lambda_{zt}, \quad \ln \lambda_{zt} = (1 - \rho_z) \ln \tilde{\lambda}_z + \rho_z \ln \lambda_{z,t-1} + \varepsilon_{zt}.
\]

(B.3)
4. The sentiment shock,
\[ \ln \theta_t = (1 - \rho_\theta) \bar{\theta} + \rho_\theta \ln \theta_{t-1} + \varepsilon_{\theta,t}. \]  
(B.4)

5. The labor shock,
\[ \ln \psi_t = (1 - \rho_\psi) \ln \bar{\psi} + \rho_\psi \ln \psi_{t-1} + \varepsilon_{\psi,t}. \]  
(B.5)

6. The financial shock,
\[ \ln \zeta_t = (1 - \rho_\zeta) \ln \bar{\zeta} + \rho_\zeta \ln \zeta_{t-1} + \varepsilon_{\zeta,t}. \]

Here, all innovations are mutually independent and independently and identically distributed normal random variables over time.

Denote by \( g_{\gamma t} \equiv \Gamma_t / \Gamma_{t-1} \) the growth rate of \( \Gamma_t \). Denote by \( g_\gamma \) the nonstochastic steady-state of \( g_{\gamma t} \), satisfying
\[ \ln g_\gamma \equiv \frac{\alpha}{1 - \alpha} \ln \bar{\lambda}_x + \ln \lambda_a. \]  
(B.6)

On the nonstochastic balanced growth path, investment and capital grow at the rate of \( \bar{\lambda}_I \equiv g_\gamma \bar{\lambda}_x \); consumption, output, wages, and bubbles grow at the rate of \( g_\gamma \); and the rental rate of capital, Tobin’s marginal \( Q \), and the relative price of investment goods decrease at the rate \( \bar{\lambda}_x \).

After the transformation described in Section 3, we can derive a system of 15 equations for 15 transformed variables: \{\( \tilde{C}_t, \tilde{I}_t, \tilde{Y}_t, N_t, K_t, u_t, \tilde{Q}_t, \tilde{X}_t, \tilde{P}_t, \tilde{\bar{R}}_t, m_t, \tilde{B}_a, R_f, \tilde{\Lambda}_t \)}.

1. Resource constraint:
\[ \tilde{C}_t + \frac{\Omega}{2} \left( \bar{I}_t g_{zt} - \bar{\lambda}_t \right)^2 \tilde{I}_t = \tilde{Y}_t, \]  
(B.7)

where \( g_{zt} = Z_t / Z_{t-1} \).

2. Aggregate Investment:
\[ \tilde{I}_t = \left( \alpha \tilde{Y}_t + \zeta_t \tilde{Q}_t \tilde{X}_t + \tilde{B}_t^a \right) \frac{1 - \Phi (\varepsilon^*_t)}{\tilde{P}_t}, \]  
(B.8)

where \( \varepsilon^*_t = \tilde{P}_t / \tilde{Q}_t \).

3. Aggregate output:
\[ \tilde{Y}_t = \left( u_t \tilde{X}_t \right) \alpha N_t^{1-\alpha}. \]  
(B.9)

4. Labor supply:
\[ (1 - \alpha) \frac{\tilde{Y}_t}{N_t} \bar{\lambda}_t = \psi_t. \]  
(B.10)

5. The law of motion for capital:
\[ \tilde{K}_{t+1} = (1 - \delta_t) \tilde{X}_t + \tilde{I}_t \frac{\Sigma (\varepsilon^*_t)}{1 - \Phi (\varepsilon^*_t)}, \]  
(B.11)

where
\[ \Sigma (\varepsilon^*_t) = \int_{\varepsilon > \varepsilon^*_t} \varepsilon d\Phi (\varepsilon). \]

6. Capacity utilization:
\[ \alpha \frac{\tilde{Y}_t}{u_t \tilde{X}_t} (1 + G_t) = \tilde{Q}_t \delta'(u_t), \]  
(B.12)
where
\[ G_t = \int_{\varepsilon > \varepsilon_t^*} (\varepsilon/\varepsilon_t^* - 1) d\Phi(\varepsilon) = \frac{\sum (\varepsilon_t^*)}{\varepsilon_t^*} + \Phi(\varepsilon_t^*) - 1. \]

7. Marginal Q:
\[ \tilde{Q}_t = \beta(1 - \delta_e)E_t \frac{\tilde{\Lambda}_{t+1}}{\tilde{\Lambda}_t} \frac{\tilde{Q}_{t+1}}{g_{zt+1}g_{\gamma t+1}} [u_{t+1}\delta'(u_{t+1}) + (1 - \delta_{t+1}) + \zeta_{t+1}G_{t+1}] \]  
\[ \text{(B.13)} \]

8. Effective capital stock used in production:
\[ \tilde{X}_t = \frac{1 - \delta_e}{g_{zt}g_{\gamma t}} \tilde{K}_t + \delta_eK_0. \]  
\[ \text{(B.14)} \]

9. Euler equation for investment goods producers:
\[ \tilde{P}_t = 1 + \Omega \left( \frac{\tilde{I}_t}{I_{t-1}} g_{zt}g_{\gamma t} - \tilde{\lambda}_t \right)^2 + \Omega \left( \frac{\tilde{I}_t}{I_{t-1}} g_{zt}g_{\gamma t} - \tilde{\lambda}_t \right) \frac{\tilde{I}_t}{I_{t-1}} g_{zt}g_{\gamma t} 
- \beta E_t \frac{\tilde{\Lambda}_{t+1}}{\tilde{\Lambda}_t} \Omega \left( \frac{\tilde{I}_t}{I_{t-1}} g_{zt+1}g_{\gamma t+1} - \tilde{\lambda}_t \right) \left( \frac{\tilde{I}_t}{I_t} \right)^2 g_{zt+1}g_{\gamma t+1}. \]  
\[ \text{(B.15)} \]

10. The wage rate:
\[ \tilde{W}_t = (1 - \alpha) \frac{\tilde{Y}_t}{N_t}. \]  
\[ \text{(B.16)} \]

11. The rental rate of capital:
\[ \tilde{R}_t = \frac{\alpha \tilde{Y}_t}{u_t \tilde{X}_t}. \]  
\[ \text{(B.17)} \]

12. Evolution of the number of bubbly firms:
\[ m_t = m_{t-1} (1 - \delta_e)\theta_{t-1} + \delta_e\omega. \]  
\[ \text{(B.18)} \]

13. Evolution of the total value of the bubble:
\[ \tilde{B}_t = \beta E_t \frac{\tilde{\Lambda}_{t+1}}{\tilde{\Lambda}_t} \tilde{B}_{t+1} (1 + G_{t+1}) (1 - \delta_e)\theta_t \frac{m_t}{m_{t+1}}. \]  
\[ \text{(B.19)} \]

14. The risk-free rate:
\[ \frac{1}{R_{ft}} = \beta E_t \frac{\tilde{\Lambda}_{t+1}}{\tilde{\Lambda}_t} \frac{1}{g_{\gamma t+1}} (1 + G_{t+1}) (1 - \delta_e). \]  
\[ \text{(B.20)} \]

15. Marginal utility for consumption:
\[ \tilde{\Lambda}_t = \frac{1}{C_t - hC_{t-1}/g_{\gamma t}} - \beta E_t \frac{h}{C_{t+1}g_{\gamma t+1} - hC_t}. \]  
\[ \text{(B.21)} \]
C Steady State

The transformed system presented in Appendix B has a nonstochastic steady state. We eliminate \( \tilde{W}_t \) and \( \tilde{R}_t \) and then obtain a system of 15 equations for 15 steady-state values: \( \{ \tilde{C}, \tilde{I}, \tilde{Y}, \tilde{N}, \tilde{K}, \tilde{u}, \tilde{Q}, \tilde{X}, \tilde{P}, \tilde{W}, \tilde{R}, \tilde{m}, \tilde{B}, \tilde{f}, \tilde{\Lambda} \} \), where we have removed time subscripts. We assume that the function \( \delta (\cdot) \) is such that the steady-state capacity utilization rate is equal to 1. In addition, we set \( \tilde{Q} = 1 \) which pins down \( G \).

1. Resource constraint:
   \[
   \tilde{C} + \tilde{I} = \tilde{Y},
   \]  
   where we have used the fact that \( \tilde{\lambda}_I = \tilde{\lambda}_zg_\gamma \).

2. Aggregate Investment:
   \[
   \tilde{I} = \left( \alpha \tilde{Y} + \tilde{\zeta} \tilde{Q} \tilde{X} + \tilde{B}^a \right) \frac{1 - \Phi (\varepsilon^*)}{P},
   \]  
   where \( 1 - \Phi (\varepsilon^*) = \int_{\varepsilon > \varepsilon^*} d\Phi (\varepsilon) \), and \( \varepsilon^* = \tilde{P}/\tilde{Q} \).

3. Aggregate output:
   \[
   \tilde{Y} = \tilde{X}^\alpha N^{1-\alpha}.
   \]  

4. Labor supply:
   \[
   (1 - \alpha) \frac{\tilde{Y}}{N} \tilde{\Lambda} = \tilde{\psi}.
   \]  

5. End-of-period capital stock:
   \[
   \tilde{K} = (1 - \delta (1)) \tilde{X} + \tilde{I} \frac{\Sigma (\varepsilon^*)}{1 - \Phi (\varepsilon^*)},
   \]  
   where \( \Sigma (\varepsilon^*) \equiv \int_{\varepsilon > \varepsilon^*} \varepsilon d\Phi (\varepsilon) \).

6. Capacity utilization:
   \[
   \alpha \frac{\tilde{Y}}{\tilde{X}} (1 + G) = \tilde{Q} \delta' (1),
   \]  
   where
   \[
   G = \int_{\varepsilon > \varepsilon^*} (\varepsilon/\varepsilon^* - 1) d\Phi (\varepsilon) = \frac{\Sigma (\varepsilon^*)}{\varepsilon^*} + \Phi (\varepsilon^*) - 1.
   \]

7. Marginal Q:
   \[
   1 = \beta (1 - \delta_e) \frac{1}{\tilde{\lambda}_zg_\gamma} \left[ \delta' (1) + 1 - \delta (1) + \tilde{\zeta} G \right].
   \]  

8. Effective capital stock used in production:
   \[
   \tilde{X} = \frac{1 - \delta_e}{\tilde{\lambda}_zg_\gamma} \tilde{K} + \delta_e K_0.
   \]
9. Euler equation for investment goods producers:

\[ \hat{P} = 1. \]  \hfill (C.9)

10. The wage rate:

\[ \tilde{W} = (1 - \alpha) \frac{\tilde{Y}}{\bar{N}}. \]  \hfill (C.10)

11. The rental rate of capital:

\[ \tilde{R} = \frac{\alpha \tilde{Y}}{\bar{X}}. \]  \hfill (C.11)

12. Evolution of the number of bubbly firms:

\[ m = m(1 - \delta_e) \bar{\theta} + \delta_e \omega. \]  \hfill (C.12)

13. Evolution of the total value of the bubble:

\[ \tilde{B}^a = \beta \tilde{B}^a (1 + G)(1 - \delta_e) \bar{\theta}. \]  \hfill (C.13)

14. The risk-free rate:

\[ \frac{1}{R_f} = \beta \frac{1}{g_{\gamma}} (1 + G)(1 - \delta_e). \]  \hfill (C.14)

15. Marginal utility for consumption:

\[ \hat{\Lambda} = \frac{1}{C - hC/g_{\gamma}} - \frac{\beta h}{C g_{\gamma} - hC}. \]  \hfill (C.15)

For convenience, define \( \varepsilon_t^* = P_t/Q_t = \tilde{P}_t/\tilde{Q}_t \) as the investment threshold. We use a variable without the time subscript to denote its steady-state value in the transformed stationary system. The following proposition characterizes the bubbly steady state.\(^{19}\)

**Proposition 2** Suppose that \( \omega > 0 \) and \( 0 < \varepsilon_{\min} < \beta(1 - \delta_e) \bar{\theta} < \beta \). Then there exists a unique steady-state threshold \( \varepsilon^* \in (\varepsilon_{\min}, \varepsilon_{\max}) \) satisfying

\[ \int_{\varepsilon > \varepsilon^*} (\varepsilon/\varepsilon^* - 1) d\Phi(\varepsilon) = \frac{1}{\beta(1 - \delta_e) \bar{\theta}} - 1. \]  \hfill (C.16)

If the parameter values are such that

\[ \frac{\tilde{B}^a}{\tilde{Y}} = \frac{[\varphi_k - (1 - \delta(1))] \varphi_x}{1/\beta(1 - \delta_e) \bar{\theta} - \Phi(\varepsilon^*)} - \alpha - \bar{\zeta} \varphi_x > 0, \]  \hfill (C.17)

where we define

\[ \varphi_k \equiv \left( \frac{1 - \delta_e}{\lambda g_{\gamma} + \delta_e \frac{K_0}{K}} \right)^{-1}. \]  \hfill (C.18)

\(^{19}\) The bubbleless steady state can be obtained by setting \( \tilde{B}^a = 0 \) and \( m = \omega = 0 \). Thus, we can remove equations (C.13) and (C.12).
\[
\varphi_x \equiv \frac{\alpha}{\lambda_x g \gamma - (1 - \delta(1)) \beta(1 - \delta_e) \theta - \zeta \left[ 1 - \beta(1 - \delta_e) \theta \right]}, \tag{C.19}
\]
then there exists a unique bubbly steady-state equilibrium with the bubble-output ratio given in (C.17). The steady-state growth rate of the bubble is given by \( \theta = R_f / g \gamma \), where \( R_f \) is the steady-state interest rate. In addition, if

\[
\delta'(1) = \frac{\alpha}{\beta(1 - \delta_e) \theta \varphi_x}, \tag{C.20}
\]
then the capacity utilization rate in this steady state is equal to 1.

**Proof:** In the steady state, equation (B.15) implies that \( \bar{P} = 1 \). Hence by definition we have \( \varepsilon^* = 1 / \bar{Q} \). Then by the evolution equation (B.19) of the total bubble, we obtain the steady-state relation:

\[
\frac{1}{\beta(1 - \delta_e) \theta} - 1 = G = \int_{\varepsilon > \varepsilon^*} \left( \varepsilon / \varepsilon^* - 1 \right) d\Phi(\varepsilon). \tag{C.21}
\]

Define the expression on the right-hand side of the last equality as a function of \( \varepsilon^* \), \( G(\varepsilon^*) \). Then we have \( G(\varepsilon_{\text{min}}) = \frac{1}{\varepsilon_{\text{min}}} - 1 \) and \( G(\varepsilon_{\text{max}}) = 0 \). Given the assumption that \( \varepsilon_{\text{min}} < \beta(1 - \delta_e) \bar{\theta} \), there is a unique solution \( \varepsilon^* \) to equation (C.21) by the intermediate value theorem. In addition, by the definition of \( G \), we have

\[
G = \sum (\varepsilon^*) - \left[ 1 - \Phi(\varepsilon^*) \right].
\]

where \( \sum (\varepsilon^*) = \int_{\varepsilon > \varepsilon^*} \varepsilon d\Phi(\varepsilon) \). Thus \( \sum (\varepsilon^*) \) can be expressed as

\[
\Sigma (\varepsilon^*) = [G + 1 - \Phi(\varepsilon^*)] \varepsilon^*. \tag{C.22}
\]

Suppose that the steady-state capacity utilization rate is equal to 1. The steady-state version of (B.13) gives (C.7) and the steady-state version of (B.12) gives (C.6). Using these two equations, we can derive

\[
\alpha \frac{\bar{Y}}{\bar{X}} = \frac{\bar{Q}}{1 + G} \left[ \frac{g \gamma}{\beta(1 - \delta_e) - (1 - \delta(1)) - \zeta G} \right]. \tag{C.23}
\]

Substituting equation (C.21) into the above equation yields:

\[
\frac{\bar{Q} \bar{X}}{\bar{Y}} = \varphi_x, \tag{C.24}
\]

where \( \varphi_x \) is given by (C.19). In order to support the steady-state \( u = 1 \), we use equation (B.12) and (C.24) to show that condition (C.20) must be satisfied.

From (B.14), the end-of-period capital stock to the output ratio in the steady state satisfies

\[
\frac{\bar{K}}{\bar{Y}} = \varphi_k \frac{\bar{X}}{\bar{Y}}, \tag{C.25}
\]
where $\varphi_k$ is given by (C.18). Then from equation (B.11), we can derive the steady-state relation:

$$
\frac{\tilde{I}}{\tilde{Y}} = \frac{1 - \Phi(\varepsilon^*)}{\Sigma(\varepsilon^*)} \frac{[\varphi_k - (1 - \delta(1))] \bar{X}}{\bar{Y}}
$$

$$
= \frac{1 - \Phi(\varepsilon^*)}{[G + 1 - \Phi(\varepsilon^*)]} \frac{[\varphi_k - (1 - \delta(1))] \varphi_x}{G + 1 - \Phi(\varepsilon^*)},
$$

(C.26)

where the second line follows from (C.22) and $\varepsilon^* = 1/\bar{Q}$ and the last line follows from (C.24). After substituting (C.21) into the above equation, we solve for $1 - \Phi(\varepsilon^*)$:

$$
1 - \Phi(\varepsilon^*) = \frac{1/\beta(1 - \delta_e) \bar{\theta} - 1}{\left(\frac{\bar{I}}{\bar{Y}}\right)^{-1} [\varphi_k - (1 - \delta(1))] \varphi_x - 1},
$$

(C.27)

From (B.8), the steady-state total value of bubble to GDP ratio is given by

$$
\frac{\tilde{B}^a}{\bar{Y}} = \frac{\bar{I}}{\bar{Y}} \frac{1}{1 - \Phi(\varepsilon^*)} - \frac{\bar{\zeta} \bar{Q} \bar{X}}{\bar{Y}}.
$$

Substituting (C.21), (C.26) and (C.24) into the above equation yields (C.17). We require $\bar{B}^a/\bar{Y} > 0$. By (23) and (34), the growth rate of bubbles of the surviving firms in the steady state is given by

$$
\bar{\theta} = R_f / g, \quad \text{Q.E.D.}
$$

## D Log-linearized System

We eliminate equations for $\hat{W}_t$ and $\hat{R}_t$. The log-linearized system for 13 variables \{\hat{C}_t, \hat{I}_t, \hat{Y}_t, N_t, \hat{K}_t, u_t, \hat{Q}_t, \hat{X}_t, \hat{P}_t, m_t, \hat{B}_t^a, R_{ft}, \hat{\Lambda}_t\} including two growth rates are summarized as follows:

1. Resource constraint:

$$
\hat{Y}_t = \frac{\hat{C}}{\bar{Y}} \hat{C}_t + \frac{\hat{I}}{\bar{Y}} \hat{I}_t.
$$

(D.1)

2. Aggregate investment:

$$
\hat{I}_t = \frac{\alpha}{\alpha + \zeta \varphi_x + B^a/\bar{Y}} \hat{Y}_t + \frac{\hat{\zeta} \varphi_x}{\alpha + \zeta \varphi_x + B^a/\bar{Y}} \left( \hat{\zeta} + \hat{Q}_t + \hat{X}_t \right)
$$

$$
+ \frac{B^a/\bar{Y}}{\alpha + \zeta \varphi_x + B^a/\bar{Y}} \hat{B}_t^a - \mu \hat{\varepsilon}_t^* - \hat{P}_t,
$$

(D.2)

where

$$
\mu = \frac{\hat{\phi}(\varepsilon^*) \varepsilon^*}{1 - \Phi(\varepsilon^*)}, \quad \hat{\varepsilon}_t^* = \hat{P}_t - \hat{Q}_t.
$$

(D.3)

3. Aggregate output:

$$
\hat{Y}_t = \alpha \left( \hat{u}_t + \hat{X}_t \right) + (1 - \alpha) \hat{N}_t.
$$

(D.4)
4. Labor supply:
\[ \hat{\Lambda}_t + \hat{Y}_t - \hat{N}_t = \hat{\psi}_t. \] (D.5)

5. End of period the capital stock:
\[
\hat{K}_{t+1} = -\delta (1) \hat{u}_t + \frac{1 - \delta (1)}{\varphi_k} \hat{X}_t + \left(1 - \frac{1 - \delta (1)}{\varphi_k}\right) \left(\hat{I}_t - \frac{\mu}{\varphi_G} \hat{\varepsilon}_t^*\right),
\] (D.6)
where
\[ \varphi_G \equiv \frac{1 - \Phi (\varepsilon^*)}{G} - 1. \] (D.7)

6. Capacity utilization:
\[
\hat{Y}_t - \hat{X}_t + \left[1 - \beta (1 - \delta_e) \theta\right] \varphi_G \hat{\varepsilon}_t^* = \hat{Q}_t + \left(1 + \frac{\delta'' (1)}{\delta' (1)}\right) \hat{u}_t.
\] (D.8)

7. Marginal Q:
\[
\hat{Q}_t = E_t \left(\hat{\Lambda}_{t+1} - \hat{\Lambda}_t\right) + E_t \left(\hat{Q}_{t+1} - \hat{g}_{zt+1} - \hat{g}_{\gamma t+1}\right)
+ \frac{\beta (1 - \delta_e) \delta' (1) \delta'' (1)}{\lambda z g_{\gamma}} E_t \hat{u}_{t+1}
+ \frac{\hat{\zeta} \beta (1 - \delta_e) G}{\lambda z g_{\gamma}} E_t \left(\hat{\varepsilon}_{t+1} + \varphi_G \hat{\varepsilon}_{t+1}^*\right).
\] (D.9)

8. Effective capital stock
\[ \hat{X}_t = \frac{1 - \delta_e}{\lambda z g_{\gamma}} \varphi_k \left(\hat{K}_t - \hat{g}_{zt} - \hat{g}_{\gamma t}\right). \] (D.10)

9. Euler equation for investment goods producers:
\[
\hat{P}_t = E_t \left[(1 + \beta) \Omega g_{\gamma}^2 \bar{\lambda}_z^2 \hat{I}_t + \Omega \bar{\lambda}_z^2 g_{\gamma}^2 (\hat{g}_{\gamma t} + \hat{g}_{zt}) - \Omega \bar{\lambda}_z^2 g_{\gamma}^2 \hat{I}_{t-1}
- \beta \Omega \bar{\lambda}_z^2 g_{\gamma}^2 \left(\hat{I}_{t+1} + \hat{g}_{zt+1} + \hat{g}_{\gamma t+1}\right)\right].
\] (D.11)

10. Evolution of the number of bubbly firms:
\[ \hat{m}_t = (1 - \delta_e) \theta \hat{m}_{t-1} + (1 - \delta_e) \theta \hat{\theta}_{t-1}. \] (D.12)

11. Evolution of the total value of the bubble:
\[
\hat{B}_t^\theta = E_t \left(\hat{\Lambda}_{t+1} - \hat{\Lambda}_t + \hat{B}_{t+1}^\theta\right) + \left[1 - \beta (1 - \delta_e) \theta\right] \varphi_G E_t \hat{\varepsilon}_{t+1}^*
+ \frac{1 - (1 - \delta_e) \theta}{(1 - \delta_e) \theta} E_t \hat{m}_{t+1}.
\] (D.13)
12. The risk-free rate
\[ -\dot{R}_t = E_t \left( \dot{\Lambda}_{t+1} - \dot{\Lambda}_t - \dot{g}_{\gamma t+1} \right) + \left[ 1 - \beta (1 - \delta_c) R_f / g_{\gamma t} \right] \varphi \sigma E_t \dot{e}_{t+1}^* . \] (D.14)

13. Marginal utility for consumption:
\[ \dot{\Lambda}_t = \frac{g_{\gamma t}}{g_{\gamma t} - \beta h} \left[ - \frac{g_{\gamma t}}{g_{\gamma t} - h} \dot{C}_t + \frac{h}{g_{\gamma t} - h} \left( \dot{C}_{t-1} - \dot{g}_{\gamma t} \right) \right] - \frac{\beta h}{g_{\gamma t} - \beta h} E_t \left[ - \frac{g_{\gamma t}}{g_{\gamma t} - h} \left( \dot{C}_{t+1} + \dot{g}_{\gamma t+1} \right) + \frac{h}{g_{\gamma t} - h} \dot{C}_t \right] . \] (D.15)

14. The growth rate of consumption goods
\[ \dot{g}_{\gamma t} = \frac{\alpha}{1 - \alpha} \dot{\lambda}_{zt} + \left( \dot{\lambda}_{at} + \dot{A}^m_t - \dot{A}^m_{t-1} \right) . \] (D.16)

15. The growth rate of the investment goods price:
\[ \dot{g}_{zt} = \dot{\lambda}_{zt} . \] (D.17)

In the above system \( G \) is determined by (C.13),
\[ G = \frac{1}{\beta (1 - \delta_c) \theta} - 1 , \] (D.18)
(1 - \( \Phi (\varepsilon^*) \)) is given by (C.27), and \( \delta' (1) \) satisfies (C.20). The log-linearized shock processes are listed below.

1. The permanent technology shock:
\[ \dot{\lambda}_{at} = \rho_a \dot{\lambda}_{at-1} + \varepsilon_{at} . \] (D.19)

2. The transitory technology shock:
\[ \dot{A}^m_t = \rho_a m \dot{A}^m_{t-1} + \varepsilon_{am,t} . \] (D.20)

3. The permanent investment-specific technology shock:
\[ \dot{\lambda}_{zt} = \rho_z \dot{\lambda}_{zt-1} + \varepsilon_{zt} . \] (D.21)

4. The labor supply shock:
\[ \dot{\psi}_t = \rho_{\psi_0} \dot{\psi}_{t-1} + \varepsilon_{\psi t} . \] (D.22)

5. The financial shock:
\[ \dot{\zeta}_t = \rho_{\zeta} \dot{\zeta}_{t-1} + \varepsilon_{\zeta t} . \] (D.23)

6. The sentiment shock:
\[ \dot{\theta}_t = \rho_{\theta} \dot{\theta}_{t-1} + \varepsilon_{\theta t} . \] (D.24)